• Title/Summary/Keyword: financial Performance

Search Result 2,278, Processing Time 0.028 seconds

Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence (인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구)

  • Cho, Yujung;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.103-128
    • /
    • 2021
  • Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.

Changing Aspects and Factors of Shaman's Play in Donghaeanbyeolsingut (동해안별신굿 굿놀이의 변화양상과 요인)

  • Kim, Shin-Hyo
    • (The) Research of the performance art and culture
    • /
    • no.38
    • /
    • pp.33-69
    • /
    • 2019
  • In this article, I would like to pay attention to the changesofShaman's play as a part of examining the process of changeofDonghaeanbyeolsingut. Currently, Shaman's play can be seeninBaekseok2-ri, Byeonggok-myeon, Yeongdeok-gun, Gugye-ri, Namjeong-myeon and Yeongdeok-gun. Among them, ShamanRitual of Baekseok2-ri is short in cycle and easy to see change. InShaman Ritual of Baekseok2-ri, various Shaman's plays suchasJungdodukjabi(중도둑잡이), Wonnimnori(원님놀이), Talgut(탈굿), Mallori(말놀이), Hotalgut(호탈굿) and Georigut(거리굿) areperformed. Shaman's play carried out in Donghaeanbyeolsingut changesevery time it is carried out. Depending on the degree of change, itcan be classified into passive change and positive change. Whilepassive changes are improvisational, aggressive changes areintentional. Shaman's plays are jungdodukjabi, Mallori, Hotalgut, which are the improvisational changes, and the intentional changesare Wonnimnori, Talgut, Georigut. The biggest change in Shaman's play is the disappearance of the Shaman Ritual. The Shaman Ritual is suspended due to lackofpeople, financial difficulties, religious conflicts or rational accidents. Secondly, the period of separation is shortened or shortened. Thiscauses Shaman's play to be dropped or shrunk to change. InShaman Ritual, changes in Shaman's play are variable andcreative. The change due to the intervention of the spectatorsismainly improvisation. On the other hand, the change bythepreliminary plan of the acquaintance is intentional, and the changeis large. The changing factors of Shaman's play are influenced bythedemands of the times and the recognition of the tradition group. Changes in the traditional environment can be attributed to lackofhuman resources, individualism, changes in the workingenvironment and time constraints. At the same time, givingautonomy to traffickers is a major reason for Shaman's playtochange.

A Study of the Influence of Start-up New Product Preannouncing Information Attributes on Purchase Intention: Focused on UTAUT2 (프리어나운싱 정보속성이 스타트업 신제품 구매의도에 미치는 영향에 관한 연구: 확장된 통합기술수용이론(UTAUT2)을 중심으로)

  • Byung-chul Han;Jae-Hyun You
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.5
    • /
    • pp.1-16
    • /
    • 2023
  • Due to imbalances in supply and demand within the labor market, start-ups have emerged as crucial players in the generation of high-quality employment opportunities, particularly in stagnant job markets. In response to this trend, governments are allocating substantial financial and human resources to initiatives that support start-up development. This has led to an increasing rate of engagement in start-up ventures across diverse age groups, not limited to younger individuals. Start-ups are enterprises focused on the commercialization of innovative ideas with the aim of achieving profitability in the marketplace. Research concerning the successful market integration of new products and the attainment of sustainable growth is pivotal. Such research is instrumental not only for the success of start-ups but also for realizing the broader social functions and contributions that these enterprises can offer. Previous research has often examined new product market-entry strategies, often referred to as new product marketing, particularly for large companies and SMEs. However, there is a gap in studies focusing on prototype marketing strategies specific to start-ups. Thus, this study aims to examine the impact of Pre-announcing marketing strategies on the market attention garnered by start-ups with low recognition and limited infrastructure, and how such attention contributes to their sustainable growth. Specifically, the study aims to uncover the causal relationship between information attributes like relevance, vividness, and novelty in building customer relationships, and their impact on purchase intentions influenced by performance expectations and hedonic motivations. In terms of Pre-announcing information attributes, relevance, vividness, and novelty positively influence performance expectations and hedonic motivations as outlined in the extended Unified Theory of Acceptance and Use of Technology (UTAUT2). These factors, in turn, positively impact the purchase intention for pre-announced new products from start-ups. These findings are expected to provide both theory and practical insights into the factors influencing market entry through the use of Pre-announcing marketing strategies for start-up new products.

  • PDF

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.

A Study on Perception and Attitudes of Health Workers Towards the Organization and Activities of Urban Health Centers (도시보건소 직원의 보건소 업무에 대한 인식 및 견해)

  • Lee, Jae-Mu;Kang, Pock-Soo;Lee, Kyeong-Soo;Kim, Cheon-Tae
    • Journal of Yeungnam Medical Science
    • /
    • v.12 no.2
    • /
    • pp.347-365
    • /
    • 1995
  • A survey was conducted to study perception and attitudes of health workers towards health center's activities and organization of health services, from August 15 to September 30, 1994. The study population was 310 health workers engaged in seven urban health centers in Taegu City area. A questionnaire method was used to collect data and response rate was 81.3 percent or 252 respondents. The following are summaries of findings: Profiles of study population: Health workers were predominantly female(62.3%); had college education(60.3%); and held medical and nursing positions(39.6%), technicians(30.6%) and public health/administrative positions(29.8%). Perceptions on health center's resources: Slightly more than a half(51.1%) of respondents expressed that physical facilities of the centers are inadequate; equipments needed are short(39.0%); human resource is inadequate(44.8%); and health budget allocated is insufficient(38.5%) to support the performance of health center's activities. Decentralization and health services: The majority revealed that the decentralization of government system would affect the future activities of health centers(51.9%) which may have to change. However, only one quarter of respondents(25.4%) seemed to view the decentralization positively as they expect that it would help perform health activities more effectively. The majority of the respondents(78.6%) insisted that the function and organization of the urban health centers should be changed. Target workload and job satisfaction: A large proportion (43.3%) of respondents felt that present target setting systems for various health activities are unrealistic in terms of community needs and health center's situation while only 11.1 percent responded it positively; the majority(57.5%) revealed that they need further training in professional fields to perform their job more effectively; more than one third(35.7%) expressed that they enjoy their professional autonomy in their job performance; and a considerable proportion (39.3%) said they are satisfied with their present work. Regarding the personnel management, more worker(47.3%) perceived it negatively than positive(11.5%) as most of workers seemed to think the personnel management practiced at the health centers is not fair or justly done. Health services rendered: Among health services rendered, health workers perceived the following services are most successfully delivered; they are, in order of importance, Tb control, curative services, and maternal and child health care. Such areas as health education, oral health, environmental sanitation, and integrated health services are needed to be strengthening. Regarding the community attitudes towards health workers, 41.3 percent of respondents think they are trusted by the community they serve. New areas of concern identified which must be included in future activities of health centers are, in order of priority, health care of elderly population, home health care, rehabilitation services, and such chronic diseases control programs as diabetes, hypertension, school health and mental health care. In conclusion, the study revealed that health workers seemed to have more negative perceptions and attitudes than positive ones towards organization and management of health services and activities performed by the urban health centers where they are engaged. More specifically, the majority of health workers studied revealed to have the following areas of health center's organization and management inadequate or insufficient to support effective performance of their health activities: Namely, physical facilities and equipments required are inadequate; human and financial resources are insufficient; personnel management is unsatisfactory; setting of service target system is unrealistic in terms of the community needs. However, respondents displayed a number of positive perceptions, particularly to those areas as further training needs and implementation of decentralization of government system which will bring more autonomy of local government as they perceived these change would bring the necessary changes to future activities of the health center. They also displayed positive perceptions in their job autonomy and have job satisfactions.

  • PDF

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

An Empirical Study on the Determinants of Supply Chain Management Systems Success from Vendor's Perspective (참여자관점에서 공급사슬관리 시스템의 성공에 영향을 미치는 요인에 관한 실증연구)

  • Kang, Sung-Bae;Moon, Tae-Soo;Chung, Yoon
    • Asia pacific journal of information systems
    • /
    • v.20 no.3
    • /
    • pp.139-166
    • /
    • 2010
  • The supply chain management (SCM) systems have emerged as strong managerial tools for manufacturing firms in enhancing competitive strength. Despite of large investments in the SCM systems, many companies are not fully realizing the promised benefits from the systems. A review of literature on adoption, implementation and success factor of IOS (inter-organization systems), EDI (electronic data interchange) systems, shows that this issue has been examined from multiple theoretic perspectives. And many researchers have attempted to identify the factors which influence the success of system implementation. However, the existing studies have two drawbacks in revealing the determinants of systems implementation success. First, previous researches raise questions as to the appropriateness of research subjects selected. Most SCM systems are operating in the form of private industrial networks, where the participants of the systems consist of two distinct groups: focus companies and vendors. The focus companies are the primary actors in developing and operating the systems, while vendors are passive participants which are connected to the system in order to supply raw materials and parts to the focus companies. Under the circumstance, there are three ways in selecting the research subjects; focus companies only, vendors only, or two parties grouped together. It is hard to find researches that use the focus companies exclusively as the subjects probably due to the insufficient sample size for statistic analysis. Most researches have been conducted using the data collected from both groups. We argue that the SCM success factors cannot be correctly indentified in this case. The focus companies and the vendors are in different positions in many areas regarding the system implementation: firm size, managerial resources, bargaining power, organizational maturity, and etc. There are no obvious reasons to believe that the success factors of the two groups are identical. Grouping the two groups also raises questions on measuring the system success. The benefits from utilizing the systems may not be commonly distributed to the two groups. One group's benefits might be realized at the expenses of the other group considering the situation where vendors participating in SCM systems are under continuous pressures from the focus companies with respect to prices, quality, and delivery time. Therefore, by combining the system outcomes of both groups we cannot measure the system benefits obtained by each group correctly. Second, the measures of system success adopted in the previous researches have shortcoming in measuring the SCM success. User satisfaction, system utilization, and user attitudes toward the systems are most commonly used success measures in the existing studies. These measures have been developed as proxy variables in the studies of decision support systems (DSS) where the contribution of the systems to the organization performance is very difficult to measure. Unlike the DSS, the SCM systems have more specific goals, such as cost saving, inventory reduction, quality improvement, rapid time, and higher customer service. We maintain that more specific measures can be developed instead of proxy variables in order to measure the system benefits correctly. The purpose of this study is to find the determinants of SCM systems success in the perspective of vendor companies. In developing the research model, we have focused on selecting the success factors appropriate for the vendors through reviewing past researches and on developing more accurate success measures. The variables can be classified into following: technological, organizational, and environmental factors on the basis of TOE (Technology-Organization-Environment) framework. The model consists of three independent variables (competition intensity, top management support, and information system maturity), one mediating variable (collaboration), one moderating variable (government support), and a dependent variable (system success). The systems success measures have been developed to reflect the operational benefits of the SCM systems; improvement in planning and analysis capabilities, faster throughput, cost reduction, task integration, and improved product and customer service. The model has been validated using the survey data collected from 122 vendors participating in the SCM systems in Korea. To test for mediation, one should estimate the hierarchical regression analysis on the collaboration. And moderating effect analysis should estimate the moderated multiple regression, examines the effect of the government support. The result shows that information system maturity and top management support are the most important determinants of SCM system success. Supply chain technologies that standardize data formats and enhance information sharing may be adopted by supply chain leader organization because of the influence of focal company in the private industrial networks in order to streamline transactions and improve inter-organization communication. Specially, the need to develop and sustain an information system maturity will provide the focus and purpose to successfully overcome information system obstacles and resistance to innovation diffusion within the supply chain network organization. The support of top management will help focus efforts toward the realization of inter-organizational benefits and lend credibility to functional managers responsible for its implementation. The active involvement, vision, and direction of high level executives provide the impetus needed to sustain the implementation of SCM. The quality of collaboration relationships also is positively related to outcome variable. Collaboration variable is found to have a mediation effect between on influencing factors and implementation success. Higher levels of inter-organizational collaboration behaviors such as shared planning and flexibility in coordinating activities were found to be strongly linked to the vendors trust in the supply chain network. Government support moderates the effect of the IS maturity, competitive intensity, top management support on collaboration and implementation success of SCM. In general, the vendor companies face substantially greater risks in SCM implementation than the larger companies do because of severe constraints on financial and human resources and limited education on SCM systems. Besides resources, Vendors generally lack computer experience and do not have sufficient internal SCM expertise. For these reasons, government supports may establish requirements for firms doing business with the government or provide incentives to adopt, implementation SCM or practices. Government support provides significant improvements in implementation success of SCM when IS maturity, competitive intensity, top management support and collaboration are low. The environmental characteristic of competition intensity has no direct effect on vendor perspective of SCM system success. But, vendors facing above average competition intensity will have a greater need for changing technology. This suggests that companies trying to implement SCM systems should set up compatible supply chain networks and a high-quality collaboration relationship for implementation and performance.

Rough Set Analysis for Stock Market Timing (러프집합분석을 이용한 매매시점 결정)

  • Huh, Jin-Nyung;Kim, Kyoung-Jae;Han, In-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.77-97
    • /
    • 2010
  • Market timing is an investment strategy which is used for obtaining excessive return from financial market. In general, detection of market timing means determining when to buy and sell to get excess return from trading. In many market timing systems, trading rules have been used as an engine to generate signals for trade. On the other hand, some researchers proposed the rough set analysis as a proper tool for market timing because it does not generate a signal for trade when the pattern of the market is uncertain by using the control function. The data for the rough set analysis should be discretized of numeric value because the rough set only accepts categorical data for analysis. Discretization searches for proper "cuts" for numeric data that determine intervals. All values that lie within each interval are transformed into same value. In general, there are four methods for data discretization in rough set analysis including equal frequency scaling, expert's knowledge-based discretization, minimum entropy scaling, and na$\ddot{i}$ve and Boolean reasoning-based discretization. Equal frequency scaling fixes a number of intervals and examines the histogram of each variable, then determines cuts so that approximately the same number of samples fall into each of the intervals. Expert's knowledge-based discretization determines cuts according to knowledge of domain experts through literature review or interview with experts. Minimum entropy scaling implements the algorithm based on recursively partitioning the value set of each variable so that a local measure of entropy is optimized. Na$\ddot{i}$ve and Booleanreasoning-based discretization searches categorical values by using Na$\ddot{i}$ve scaling the data, then finds the optimized dicretization thresholds through Boolean reasoning. Although the rough set analysis is promising for market timing, there is little research on the impact of the various data discretization methods on performance from trading using the rough set analysis. In this study, we compare stock market timing models using rough set analysis with various data discretization methods. The research data used in this study are the KOSPI 200 from May 1996 to October 1998. KOSPI 200 is the underlying index of the KOSPI 200 futures which is the first derivative instrument in the Korean stock market. The KOSPI 200 is a market value weighted index which consists of 200 stocks selected by criteria on liquidity and their status in corresponding industry including manufacturing, construction, communication, electricity and gas, distribution and services, and financing. The total number of samples is 660 trading days. In addition, this study uses popular technical indicators as independent variables. The experimental results show that the most profitable method for the training sample is the na$\ddot{i}$ve and Boolean reasoning but the expert's knowledge-based discretization is the most profitable method for the validation sample. In addition, the expert's knowledge-based discretization produced robust performance for both of training and validation sample. We also compared rough set analysis and decision tree. This study experimented C4.5 for the comparison purpose. The results show that rough set analysis with expert's knowledge-based discretization produced more profitable rules than C4.5.

Target-Aspect-Sentiment Joint Detection with CNN Auxiliary Loss for Aspect-Based Sentiment Analysis (CNN 보조 손실을 이용한 차원 기반 감성 분석)

  • Jeon, Min Jin;Hwang, Ji Won;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.1-22
    • /
    • 2021
  • Aspect Based Sentiment Analysis (ABSA), which analyzes sentiment based on aspects that appear in the text, is drawing attention because it can be used in various business industries. ABSA is a study that analyzes sentiment by aspects for multiple aspects that a text has. It is being studied in various forms depending on the purpose, such as analyzing all targets or just aspects and sentiments. Here, the aspect refers to the property of a target, and the target refers to the text that causes the sentiment. For example, for restaurant reviews, you could set the aspect into food taste, food price, quality of service, mood of the restaurant, etc. Also, if there is a review that says, "The pasta was delicious, but the salad was not," the words "steak" and "salad," which are directly mentioned in the sentence, become the "target." So far, in ABSA, most studies have analyzed sentiment only based on aspects or targets. However, even with the same aspects or targets, sentiment analysis may be inaccurate. Instances would be when aspects or sentiment are divided or when sentiment exists without a target. For example, sentences like, "Pizza and the salad were good, but the steak was disappointing." Although the aspect of this sentence is limited to "food," conflicting sentiments coexist. In addition, in the case of sentences such as "Shrimp was delicious, but the price was extravagant," although the target here is "shrimp," there are opposite sentiments coexisting that are dependent on the aspect. Finally, in sentences like "The food arrived too late and is cold now." there is no target (NULL), but it transmits a negative sentiment toward the aspect "service." Like this, failure to consider both aspects and targets - when sentiment or aspect is divided or when sentiment exists without a target - creates a dual dependency problem. To address this problem, this research analyzes sentiment by considering both aspects and targets (Target-Aspect-Sentiment Detection, hereby TASD). This study detected the limitations of existing research in the field of TASD: local contexts are not fully captured, and the number of epochs and batch size dramatically lowers the F1-score. The current model excels in spotting overall context and relations between each word. However, it struggles with phrases in the local context and is relatively slow when learning. Therefore, this study tries to improve the model's performance. To achieve the objective of this research, we additionally used auxiliary loss in aspect-sentiment classification by constructing CNN(Convolutional Neural Network) layers parallel to existing models. If existing models have analyzed aspect-sentiment through BERT encoding, Pooler, and Linear layers, this research added CNN layer-adaptive average pooling to existing models, and learning was progressed by adding additional loss values for aspect-sentiment to existing loss. In other words, when learning, the auxiliary loss, computed through CNN layers, allowed the local context to be captured more fitted. After learning, the model is designed to do aspect-sentiment analysis through the existing method. To evaluate the performance of this model, two datasets, SemEval-2015 task 12 and SemEval-2016 task 5, were used and the f1-score increased compared to the existing models. When the batch was 8 and epoch was 5, the difference was largest between the F1-score of existing models and this study with 29 and 45, respectively. Even when batch and epoch were adjusted, the F1-scores were higher than the existing models. It can be said that even when the batch and epoch numbers were small, they can be learned effectively compared to the existing models. Therefore, it can be useful in situations where resources are limited. Through this study, aspect-based sentiments can be more accurately analyzed. Through various uses in business, such as development or establishing marketing strategies, both consumers and sellers will be able to make efficient decisions. In addition, it is believed that the model can be fully learned and utilized by small businesses, those that do not have much data, given that they use a pre-training model and recorded a relatively high F1-score even with limited resources.

An Exploratory Study of Purchasing Decision Making and Adoption on the RFID Purchasing Customer (RFID 구매고객의 구매 의사결정과 수용에 대한 탐색적 연구)

  • Seo, Pil-Su;Jang, Jang-Yi;Shim, Kyeng-Su
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.3 no.4
    • /
    • pp.89-116
    • /
    • 2008
  • RFID (Radio Frequency Identification) is regarded as a core technology of ubiquitous computing. Although it has some technical limitations such as technological standardization of RFID tags as well as economical limitations, many companies around the world have already accepted RFID to improve their management efficiency. In this regard, this study is to meet with results that the adoption of RFID technology willbring opportunities that companies' operational process are improved and customer satisfaction is highly strengthened. This research focuses on providing more understanding for building RFID marketing strategy to suppliers who want to sell their RFID products to customers through analyzing purchasing process. The findings are as follows; First, the study shows that buying center members usually take product reliability and precision of technical specification in the case of new-task buying situation while they put their first purchasing priority on prices in the straight rebuy. Second, the finding presents that in new-task buying situation and the straight rebuy purchasing personnel get information about new products through product performance test, organizational engineers, opinions from other companies' purchasing personnel, and checking out samples. Third, this research demonstrates when it comes to purchasing risk in their first purchasing, the persons who are in charge of material purchasing are inclined to be aware of the risk most in technical problems, followed by financial problems and time delay problems in order. And in addition to those risks are mentioned above, once-again-purchasers take the risk like an opportunity loss for better products into consideration. Fourth, the study shows that the role of concerning departments makes no difference in each purchasing stage. Accordingly marketers need to beef up the differentiated strategy to persuade their customers Fifth, the findings of this study demonstrate that purchasing decision making is much influenced by the final users. So suppliers are supposed to perform the most active marketing strategy at the first stage of purchasing through various resources. Finally, the study presents that the suppliers who will have had close relationships with their customers need to give consistent information to them so that their customers can have lower motive in purchasing products from competitors.

  • PDF