• Title/Summary/Keyword: filter performance

Search Result 4,620, Processing Time 0.026 seconds

INS/GPS Integrated Smoothing Algorithm for Synthetic Aperture Radar Motion Compensation Using an Extended Kalman Filter with a Position Damping Loop

  • Song, Jin Woo;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.118-128
    • /
    • 2017
  • In this study, we propose a real time inertial navigation system/global positioning system (INS/GPS) integrated smoothing algorithm based on an extended Kalman filter (EKF) and a position damping loop (PDL) for synthetic aperture radar (SAR). Integrated navigation algorithms usually induce discontinuities due to error correction update by the Kalman filter, which are as detrimental to the performance of SAR as the relative position error. The proposed smoothing algorithm suppresses these discontinuities and also reduces the relative position error in real time. An EKF estimates the navigation errors and sensor biases, and all the errors except for the position error are corrected directly and instantly. A PDL activated during SAR operation period imposes damping effects on the position error estimates, where the estimated position error is corrected smoothly and gradually, which contributes to the real time smoothing and small relative position errors. The residual errors are re-estimated by the EKF to maintain the estimation performance and the stability of the overall loop. The performance improvements were confirmed by Monte Carlo simulations. The simulation results showed that the discontinuities were reduced by 99.8% and the relative position error by 48% compared with a conventional EKF without a smoothing loop, thereby satisfying the basic performance requirements for SAR operation. The proposed algorithm may be applicable to low cost SAR systems which use a conventional INS/GPS without changing their hardware configurations.

Optical performance monitoring in 16CH WDM system, using FFP-TF (FFP-TF를 활용한 OPM의 16CH WDM시스템 광 성능 모니터링)

  • 이동선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8A
    • /
    • pp.657-662
    • /
    • 2003
  • The OPM(optical performance monitoring module) is needed in order to monitor optical performance. the most importance of OPM is to measure the wavelength of optical signal. In the past time, it was very difficult to get the wavelength value because they used pilot tone. Since then, using AWG(arrayed waveguide grating) and AOTF(acousto optic tuneable filter), the wavelength and the transmission qualify for multi channel signal have been monitored. In this paper, we chose the fiber fabry-perot wavelength variable filter which be evaluated for optical resolution ability to excellent, so that FBG(fiber bragg grating) was used for setting reference wavelength because chose a wavelength variable filter.

Fine Particle Removal by a Vehicle Air Cleaner (차량용 에어클리너의 미세입자 제거특성)

  • Park, Byung-Hyun;Kim, Sang-Bum;Kim, Gyung-Soo;Lee, Sang-Ryul;Lee, Myong-Hwa
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.86-93
    • /
    • 2007
  • There is a growing interest to develop an eco-friendly air cleaner with high performance through a remanufacturing process. Two kinds of polyurethane filter media, a coarse (Filter-A) and a fine filter media (Filer-B), are used in this study to protect a vehicle engine from airborne particles. In order to improve the collection performance of the filters (Filter-A, Filter-B), an oil coating technology on the filter surface was introduced. As a result, inertial force is a dominant collection mechanism for a dry filter media, so that collection efficiency increases with increasing filtration velocity. However, intra-structure change of an oil-coated filter media influences on the collection mechanism, which shows a non-linear collection efficiency curve in terms of filtration velocity. The result shows that the developed filter media are eco-friendly and effective to protect a vehicle engine from airborne particles especially at low filtration velocity.

  • PDF

An Interpolation Filter Design for the Full Digital Audio Amplifier (완전 디지털 오디오 증폭기를 위한 보간 필터 설계)

  • Heo, Seo-Weon;Sung, Hyuk-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.253-258
    • /
    • 2012
  • A computationally efficient interpolation filter with a low-distortion performance is a key component to utilize the naturally-sampled pulse width modulation (NPWM) in a digital domain. To realize the efficient interpolation filter, we propose a novel design based on the recently-proposed modified Farrow filter. The proposed filter shows a better pass-band distortion performance maintaining similar degree of complexity compared with the conventional Lagrange interpolation filter. We achieve the maximum distortion deviation of 10-3 dB to 20-kHz audible frequency range and distortion reduction of 1/6 times compared with the Lagrange interpolation filter.

A column study of effect of filter media on the performance of sand filter

  • Kim, Tae-hoon;Oh, Heekyong;Eom, Jungyeol;Park, ChulHwi
    • Membrane and Water Treatment
    • /
    • v.11 no.4
    • /
    • pp.247-255
    • /
    • 2020
  • Sand filter is a key unit process for particle removal in water purification treatments. Its long-standing use is due to on-site customized retrofit. Proper selection of filter media is one of the retrofit approaches to improve filter performance. This study described a series of controlled laboratory column tests and examined the effects of media property on filtration and backwash. When sand media of 0.51 mm in effective size was replaced by sand of 0.60 mm, the filter run increased up to 5 times in the given bed depth. The change of media property required an increase of backwash rate by 0.05 m/min to satisfy the requirement of bed expansion, more than 20%. When the anthracite was changed with lower effective size and uniformity coefficient, correlation with sand in the filter bed could be satisfied within the permissible error between media and bulk characteristics. Besides, this selection resulted in a well-stratified configuration of media layers after bed expansion. The column study showed that the correlation of property between the dual media had a significant effect on the filter productivity and backwash interval.

Low sidelobe digital doppler filter bank synthesis algorithm for coherent pulse doppler radar (Coherent 레이다 신호처리를 위한 저부엽 도플러 필터 뱅크 합성 알고리즘)

  • 김태형;허경무
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.612-621
    • /
    • 1996
  • In this paper, we propose the low sidelobe digital FIR doppler filter bank synthesis algorithm through the Gradient Descent method and it can be practially appliable to coherent pulse doppler radar signal processing. This algorithm shows the appropriate calculation of tap coefficients or zeros for FIR transversal fiter which has been employed in radar signal processor. The span of the filters in the filter bank be selected at the desired position the designer want to locate, and the lower sidelobe level that has equal ripple property is achieved than one for which the conventional weithtedwindow is used. Especially, when we implemented filter zeros as design parameters it is possible to make null filter gain at zero frequency intensionally that would be very efficient for the eliminatio of ground clutter. For the example of 10 tap filter synthesis, when filter coefficients or zeros are selected as design parameters the corresponding sidelobelevel is reducedto -70db or -100db respectively and it has good convergent characteristics to the desired sidelobe reference value. The accuracy ofapproach to the reference value and the speed of convergence that show the performance measure of this algorithm are tuned out with some superiority and the fact that the bandwidth of filter appears small with respect to one which is made by conventional weighted window method is convinced. Since the filter which is synthesized by this algorithm can remove the clutter without loss of target signal it strongly contributes performance improvement with which detection capability would be concerned.

  • PDF

Performance Analysis of Tactical Ballistic Missile Tracking Filters in Phased Array Multi-Function Radar (위상 배열 다기능 레이더의 탄도탄 추적 필터 성능 분석)

  • Jung, Kwang-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.995-1001
    • /
    • 2012
  • This paper compares the performance of several tracking filters, namely, alpha-beta filter, Kalman filter and TBM tracking filter for ballistic target tracking problem using multi-function radar. Every of three tracking filters suggested was tested on simulator developed in accordance with TBM trajectory and MFR RSP measurement. The result shows the method using TBM tracking filter gives 75.3 % decreased velocity RMS error than alpha-beta filter. After initialization, the RMS error of range and velocity of the proposed filter is also smaller than the Kalman filter. Finally the proposed filter is suitable for high-speed TBM tracking due to the stable angle tracking accuracy.

Performance Evaluation of RWA Vibration Isolator Using Notch Filter Control (노치 필터 제어기법을 이용한 반작용 휠 미소진동 절연장치의 절연성능 평가)

  • Park, Geeyong;Suh, Jong-Eun;Lee, Dae-Oen;Han, Jae-Hung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.391-397
    • /
    • 2016
  • Vibration disturbances induced by the reaction wheels can severely degrade the performance of high precision payloads on board satellites with high pointing stability requirements. The unwanted disturbances produced by the reaction wheels are composed of fundamental harmonic disturbances due to the flywheel imbalance and sub/higher harmonic disturbances due to bearing irregularities, motor imperfections and so on. Because the wheel speed is constantly changed during the operation of a reaction wheel, the vibration disturbance induced by the reaction wheels can magnify the satellite vibration when the rotating frequency of wheel meets the natural frequency of satellite structure. In order to provide an effective isolation of the reaction wheel disturbances, isolation performance of a hybrid vibration isolator is investigated. In this paper, hybrid vibration isolator that combines passive and active components is developed and its hybrid isolation performance using notch filter control is evaluated in single-axis. The hybrid isolation performance using notch filter control show additional performance improvement compared to the results using only passive components.

Study on Dual-Energy Signal and Noise of Double-Exposure X-Ray Imaging for High Conspicuity

  • Song, Boram;Kim, Changsoo;Kim, Junwoo
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.160-169
    • /
    • 2021
  • Background: Dual-energy X-ray images (DEI) can distinguish or improve materials of interest in a two-dimensional radiographic image, by combining two images obtained from separate low and high energies. The concepts of DEI performance describing the performance of double-exposure DEI systems in the Fourier domain been previously introduced, however, the performance of double-exposure DEI itself in terms of various parameters, has not been reported. Materials and Methods: To investigate the DEI performance, signal-difference-to-noise ratio, modulation transfer function, noise power spectrum, and noise equivalent quanta were used. Low- and high-energy were 60 and 130 kVp with 0.01-0.09 mGy, respectively. The energy-separation filter material and its thicknesses were tin (Sn) and 0.0-1.0 mm, respectively. Noise-reduction (NR) filtering used the Gaussian-filter NR, median-filter NR, and anti-correlated NR. Results and Discussion: DEI performance was affected by Sn-filter thickness, weighting factor, and dose allocation. All NR filtering successfully reduced noise, when compared with the dual-energy (DE) images without any NR filtering. Conclusion: The results indicated the significance of investigating, and evaluating suitable DEI performance, for DE images in chest radiography applications. Additionally, all the NR filtering methods were effective at reducing noise in the resultant DE images.

A study on enhancement of heterogeneous noisy image quality for the performance improvement of target detection and tracking (표적 탐지/추적 성능 향상을 위한 불균일 미세 잡음 영상 화질개선 연구)

  • Kim, Y.;Yoo, P.H.;Kim, D.S.
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.923-936
    • /
    • 2014
  • Images can be contaminated with different types of noise, for different reasons. The neighborhood averaging and smoothing by image averaging are the classical image processing techniques for noise removal. The classical spatial filtering refers to the aggregate of pixels composing an image and operating directly on these pixels. To reduce or remove effectively noise in image sequences, it usually needs to use noise reduction filter based on space or time domain such as method of spatial or temporal filter. However, the method of spatial filter can generally cause that signals of objects as the target are also blurred. In this paper, we propose temporal filter using the piece-wise quadratic function model and enhancement algorithm of image quality for the performance improvement of target detection and tracking by heterogeneous noise reduction. Image tracking simulation that utilizes real IIR(Imaging Infra-Red) images is employed to evaluate the performance of the proposed image processing algorithm.