• Title/Summary/Keyword: film-based system

Search Result 744, Processing Time 0.031 seconds

Development of a Planting Density-Growth-Harvest Chart for Common Ice Plant Hydroponically Grown in Closed-type Plant Production System (식물 생산 시스템에서 수경재배한 Common Ice Plant의 재식밀도-생육-수확 도표 개발)

  • Cha, Mi-Kyung;Park, Kyoung Sub;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.106-110
    • /
    • 2016
  • In this study, a planting density-growth-harvest (PGH) chart was developed to easily read the growth and harvest factors such as crop growth rate, relative growth rate, shoot fresh weight, shoot dry weight, harvesting time, marketable rate, and marketable yield of common ice plant (Mesembryanthemum crystallinum L.). The plants were grown in a nutrient film technique (NFT) system in a closed-type plant factory using fluorescent lamps with three-band radiation under a light intensity of $140{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and a photoperiod of 12 h. Growth and yield were analyzed under four planting densities ($15{\times}10cm$, $15{\times}15cm$, $15{\times}20cm$, and $15{\times}25cm$). Shoot fresh and dry weights per plant increased at a higher planting density until reached an upper limit and yield per area was also same tendency. Crop growth rate, relative growth rate and lost time were described using quadratic equation. A linear relationship between shoot dry weight and fresh weights was observed. PGH chart was constructed based on the growth data and making equations. For instance, with within row spacing (= 20 cm) and fresh weight per plant at harvest (= 100 g), we can estimate all the growth and harvest factors of common ice plant. The planting density, crop growth rate, relative growth rate, lost time, shoot dry weight per plant, harvesting time, and yield were $33plants/m^2$, $20g{\cdot}m^{-2}{\cdot}d^{-1}$, $0.27g{\cdot}g^{-1}{\cdot}d^{-1}$, 22 days, 2.5 g/plant, 26 days after transplanting, and $3.2kg{\cdot}m^{-2}$, respectively. With this chart, we could easily obtain the growth factors such as planting density, crop growth rate, relative growth rate, lost time and the harvest factors such as shoot fresh and dry weights, harvesting time, marketable rate, and marketable yield with at least two parameters, for instance, planting distance and one of harvest factors of plant. PGH charts will be useful tools to estimate the growth and yield of crops and to practical design of a closed-type plant production system.

Three-Dimensional Dosimetry Using Magnetic Resonance Imaging of Polymer Gel (중합체 겔과 자기공명영상을 이용한 3차원 선량분포 측정)

  • Oh Young-Taek;Kang Haejin;Kim Miwha;Chun Mison;Kang Seung-Hee;Suh Chang Ok;Chu Seong Sil;Seong Jinsil;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.264-273
    • /
    • 2002
  • Purpose : Three-dimensional radiation dosimetry using magnetic resonance imaging of polymer gel was recently introduced. This dosimetry system is based on radiation induced chain polymerization of acrylic monomers in a muscle equivalent gel and provide accurate 3 dimensional dose distribution. We planned this study to evaluate the clinical value of this 3-dimensional dosimetry. Materials and Methods: The polymer gel poured into a cylindrical glass flask and a spherical glass flask. The cylindrical test tubes were for dose response evaluation and the spherical flasks, which is comparable to the human head, were for isodose curves. T2 maps from MR images were calculated using software, IDL. Dose distributions have been displayed for dosimetry. The same spherical flask of gel and the same irradiation technique was used for film and TLD dosimetry and compared with each other. Results : The R2 of the gel respond linearly with radiation doses in the range of 2 to 15 Gy. The repeated dosimetry of spherical gel showed the same isodose curves. These isodose curves were identical to dose distributions from treatment planning system especially high dose range. In addition, the gel dosimetry system showed comparable or superior results with the film and TLD dosimetry. Conclusion : The 3-dimensional dosimetry for conformal radiation therapy using MRI of polymer gal showed stable and accurate results. Although more studies are needed for convenient clinical application, it appears to be a useful tool for conformal radiation therapy.

Waiting for Digital Art - digital vs analogue (디지털 아트를 위한 기다림 - 디지털 대 아날로그)

  • Shin, Jun-Hyouk
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.22 no.1
    • /
    • pp.22-29
    • /
    • 2013
  • In general, to conduct aesthetic restorations, various analyses are carried out using a camera from the initial examination with the final prosthesis in consideration. With the reality that many dentists are using digital cameras, it can be considered that the time of digital impression has already started. Just as the recent general trend is that more and more internationally renowned photographers are switching their film cameras to digital counterparts, it is likely that CAD/CAM will show another direction in the area of the aesthetic dentistry that we may want to pursue. With the word 'digital', the convenience and economics often come to mind in the first place. However, from the dental clinical viewpoint, it is important to improve and develop the CAD/CAM system based on understanding its specialty and superiority while respecting the conventional analog techniques. However, a regretful aspect is that it is often difficult to catch up with the latest advancements for proper referencing and follow-up of digital technologies since the CAD/CAM device and material are developing very rapidly. Accordingly, although it is ideal to have hands-on experiences in various digital material and devices, and adapt to their fast changes, it must be stressed that the clinical application is to be implemented on the basis of the proven traditional way of dental clinics in order to obtain better outcomes. This presentation will explore types of approaches that can be made by combining the traditional techniques and the CAD/CAM from the aesthetic viewpoint. In addition, it is hoped and eagerly awaited that the CAD/CAM restoration may play a significant role in the field of the 'digital art'.

A Study on the Morphological Management of Major Landscape Elements in Organic Farming (유기농업단지 주요경관요소의 물리적 관리방안에 관한 연구)

  • An, Phil Gyun;Kong, Min Jea;Lee, Sang Min;Kim, Sang Bhum;Jo, Jung Lae;Kim, Nam Chun;Shin, Ji Hoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.2
    • /
    • pp.107-116
    • /
    • 2020
  • Up to date, the majority research on the major landscape elements in organic farming has been mainly focused on the practice of seeking efficiency. The problem is that this type of study contributes to polluting the agricultural environment and damaging the ecological circulation system. As an alternative, there is a growing body of research on organic farming, but it is not widely applied that research on how to manage the landscape considering the scenic characteristics of farming villages practicing organic farming. Therefore, this study was carried out in the conservative aspects of rural landscapes in order to effectively manage the landscape of organic agriculture and, intended to be used to maintain and preserve natural and ecologically harmonious landscapes by deriving management methods suitable for landscape elements targeting the major landscape elements of the organic farming complex. To carry out, this study performed the experts survey which is composed of 13 major landscape elements, including rice paddies and fields, monoculture and diverse crops, dirt roads, windbreak trees, accent planting, dum-bung(small pond), natural small river, natural waterways, plastic film houses, one-storied houses, and pavilion. As a result, Farm land was formed in a square shape, concentrated in an independent space, planted companion plants around the crop, and covered with plants to manage the borders. As for the surrounding environment, it was analyzed that the aspart road system circulating through the village, the evergreen broad-leaved windbreak forest around the cultivated land, and the accent plant located at the entrance of the village were suitable. The hydrological environment consists of Round small pond made of stone in an open space, natural rivers around the village, and natural channels around the farmland, and The Major facilities are suitable for greenhouses that are shielded by plants in independent regions, and wooden duck houses located inside the cultivation area are suitable and The settlement facilities were analyzed to be suitable for single-story brick houses located in independent residential areas, pavilion located with greenery in the center of the village, and educational spaces shielded with wood from arable land. If supplementary evaluation criteria suitable for the management of organic farming landscape are additionally supplemented based on the results derived from this study, It is expected to enhance the landscape value of ecologically superior organic farming.

Dye-sensitized Solar Cells Utilizing Core/Shell Structure Nanoparticle Fabrication and Deposition Process (코어/쉘 구조의 나노입자 제조 및 증착 공정을 활용한 염료감응 태양전지)

  • Jeong, Hongin;Yoo, Jhongryul;Park, Sungho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.111-117
    • /
    • 2019
  • This study proposed the fabrication and deposition of high purity crystalline $core-TiO_2/shell-Al_2O_3$ nanoparticles. Morphological properties of $core-TiO_2$ and coated $shell-Al_2O_3$ were confirmed by transmission electron microscope (TEM) and transmission electron microscope - energy dispersive spectroscopy (TEM-EDS). The electrical properties of the prepared $core-TiO_2/shell-Al_2O_3$ nanoparticles were evaluated by applying them to a working electrode of a Dye-Sensitized Solar Cell (DSSC). The particle size, growth rate and the main crystal structure of $core-TiO_2$ were analyzed through dynamic light scattering system (DLS), scanning electron microscope (SEM) and X-ray diffraction (XRD). The $core-TiO_2$, which has a particle size of 17.1 nm, a thin film thickness of $20.1{\mu}m$ and a main crystal structure of anatase, shows higher electrical efficiency than the conventional paste-based dye-sensitized solar cell (DSSC). In addition, the energy conversion efficiency (6.28%) of the dye-sensitized solar cell (DSSC) using the $core-TiO_2/shell-Al_2O_3$ nanoparticles selectively controlled to the working electrode is 26.1% higher than the energy conversion efficiency (4.99%) of the dye-sensitized solar cell (DSSC) using the conventional paste method.

A Case Study on the Improvement of the Beauty of Photovoltaic Generator : Focusing on the case of installation on the vertical side wall of a building (태양광 발전기의 심미성 향상을 위한 사례분석 연구 : 건물 수직 측벽에 설치되는 사례를 중심으로)

  • Lee, Jae-Hyun;Park, Ji-Hoon;Nam, Won-Suk;Jang, Jung-Sik
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.97-103
    • /
    • 2020
  • This study sets the solar power system installed and applied to the vertical side wall among the photovoltaic systems in the building as the scope of the research. The theoretical background was considered through literature research as a research method, and the current status, trends and characteristics of solar generator design installed and applied to domestic and foreign vertical side walls were then investigated and analyzed cases. As a result, the importance and necessity of photovoltaic generators, potential for power generation and growth were identified, and positive factors and directions were found for improving aestheticity. Based on this point, we would like to propose expected effects that can be applied to photovoltaic system design installed and applied to vertical side walls in the future, and confirm the direction and significance of the improvement of aesthetic quality of the proposal for development of thin film solar cell design technology using green facade design.

Dosimetric Study Using Patient-Specific Three-Dimensional-Printed Head Phantom with Polymer Gel in Radiation Therapy

  • Choi, Yona;Chun, Kook Jin;Kim, Eun San;Jang, Young Jae;Park, Ji-Ae;Kim, Kum Bae;Kim, Geun Hee;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.99-106
    • /
    • 2021
  • Purpose: In this study, we aimed to manufacture a patient-specific gel phantom combining three-dimensional (3D) printing and polymer gel and evaluate the radiation dose and dose profile using gel dosimetry. Methods: The patient-specific head phantom was manufactured based on the patient's computed tomography (CT) scan data to create an anatomically replicated phantom; this was then produced using a ColorJet 3D printer. A 3D polymer gel dosimeter called RTgel-100 is contained inside the 3D printing head phantom, and irradiation was performed using a 6 MV LINAC (Varian Clinac) X-ray beam, a linear accelerator for treatment. The irradiated phantom was scanned using magnetic resonance imaging (Siemens) with a magnetic field of 3 Tesla (3T) of the Korea Institute of Nuclear Medicine, and then compared the irradiated head phantom with the dose calculated by the patient's treatment planning system (TPS). Results: The comparison between the Hounsfield unit (HU) values of the CT image of the patient and those of the phantom revealed that they were almost similar. The electron density value of the patient's bone and brain was 996±167 HU and 58±15 HU, respectively, and that of the head phantom bone and brain material was 986±25 HU and 45±17 HU, respectively. The comparison of the data of TPS and 3D gel revealed that the difference in gamma index was 2%/2 mm and the passing rate was within 95%. Conclusions: 3D printing allows us to manufacture variable density phantoms for patient-specific dosimetric quality assurance (DQA), develop a customized body phantom of the patient in the future, and perform a patient-specific dosimetry with film, ion chamber, gel, and so on.

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF

Tri-branched tri-anchoring organic dye for Visible light-responsive dye-sensitized photoelectrochemical water-splitting cells (염료감응형 광전기화학 물분해 전지용 Tri-branched tri-anchoring organic dye 개발)

  • Park, Jeong-Hyun;Kim, Jae-Hong;Ahn, Kwang-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.87-87
    • /
    • 2010
  • Photoelectrochemical (PEC) systems are promising methods of producing H2 gas using solar energy in an aqueous solution. The photoelectrochemical properties of numerous metal oxides have been studied. Among them, the PEC systems based on TiO2 have been extensively studied. However, the drawback of a PEC system with TiO2 is that only ultraviolet (UV) light can be absorbed because of its large band gap (3.2 - 3.4 eV). Two approaches have been introduced in order to use PEC cells in the visible light region. The first method includes doping impurities, such as nitrogen, into TiO2, and this technique has been extensively studied in an attempt to narrow the band gap. In comparison, research on the second method, which includes visible light water splitting in molecular photosystems, has been slow. Mallouk et al. recently developed electrochemical water-splitting cells using the Ru(II) complex as the visible light photosensitizer. the dye-sensitized PEC cell consisted of a dye-sensitized TiO2 layer, a Pt counter electrode, and an aqueous solution between them. Under a visible light (< 3 eV) illumination, only the dye molecule absorbed the light and became excited because TiO2 had the wide band gap. The light absorption of the dye was followed by the transfer of an electron from the excited state (S*) of the dye to the conduction band (CB) of TiO2 and its subsequent transfer to the transparent conducting oxide (TCO). The electrons moved through the wire to the Pt, where the water reduction (or H2 evolution) occurred. The oxidized dye molecules caused the water oxidation because their HOMO level was below the H2O/O2 level. Organic dyes have been developed as metal-free alternatives to the Ru(II) complexes because of their tunable optical and electronic properties and low-cost manufacturing. Recently, organic dye molecules containing multi-branched, multi-anchoring groups have received a great deal of interest. In this work, tri-branched tri-anchoring organic dyes (Dye 2) were designed and applied to visible light water-splitting cells based on dye-sensitized TiO2 electrodes. Dye 2 had a molecular structure containing one donor (D) and three acceptor (A) groups, and each ended with an anchoring functionality. In comparison, mono-anchoring dyes (Dye 1) were also synthesized. The PEC response of the Dye 2-sensitized TiO2 film was much better than the Dye 1-sensitized or unsensitized TiO2 films.

  • PDF

2-Hexylthieno[3,2-b]thiophene-substituted Anthracene Derivatives for Organic Field Effect Transistors and Photovoltaic Cells

  • Jo, So-Young;Hur, Jung-A;Kim, Kyung-Hwan;Lee, Tae-Wan;Shin, Ji-Cheol;Hwang, Kyung-Seok;Chin, Byung-Doo;Choi, Dong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3061-3070
    • /
    • 2012
  • Novel 2-hexylthieno[3,2-b]thiophene-containing conjugated molecules have been synthesized via a reduction reaction using tin chloride in an acidic medium. They exhibited good solubility in common organic solvents and good self-film and crystal-forming properties. The single-crystalline objects were fabricated by a solvent slow diffusion process and then were employed for fabricating field-effect transistors (FETs) along with thinfilm transistors (TFTs). TFTs made of 5 and 6 exhibited carrier mobility as high as 0.10-0.15 $cm^2V^{-1}s^{-1}$. The single-crystal-based FET made of 6 showed 0.70 $cm^2V^{-1}s^{-1}$ which was relatively higher than that of the 5-based FET (${\mu}=0.23cm^2V^{-1}s^{-1}$). In addition, we fabricated organic photovoltaic (OPV) cells with new 2-hexylthieno [3,2-b]thiophene-containing conjugated molecules and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester ($PC_{61}BM$) without thermal annealing. The ternary system for a bulk heterojunction (BHJ) OPV cell was elaborated using $PC_{61}BM$ and two p-type conjugated molecules such as 5 and 7 for modulating the molecular energy levels. As a result, the OPV cell containing 5, 7, and $PC_{61}BM$ had improved results with an open-circuit voltage of 0.90 V, a short-circuit current density of 2.83 $mA/cm^2$, and a fill factor of 0.31, offering an overall power conversion efficiency (PCE) of 0.78%, which was larger than those of the devices made of only molecule 5 (${\eta}$~0.67%) or 7 (${\eta}$~0.46%) with $PC_{61}BM$ under identical weight compositions.