• Title/Summary/Keyword: filling-in

Search Result 3,652, Processing Time 0.031 seconds

Development of an implicit filling algorithm (암시적 방법을 이용한 충전 알고리즘의 개발)

  • Im, Ik-Tae;Kim, U-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.104-112
    • /
    • 1998
  • The mold filling process has been a central issue in the development of numerical methods to solve the casting processes. A mold filling which is inherently transient free surface fluid flow, is important because the quality of casting highly depends on such phenomenon, Most of the existing numerical schemes to solve mold filling process have severe limitations in time step restrictions or Courant criteria since explicit time integration is used. Therefore, a large computation time is required to analyze casting processes. In this study, the well known SOLA-VOF method has been modified implicitly to simulate the mold filling process. Solutions to example filling problems show that the proposed method is more efficient in computation time than the original SOLA -VOF method.

Development of Runner System for Filling Balance in Multi Cavity Injection Mold (다수 캐비티 사출금형에서 균형 충전용 러너 시스템 개발)

  • Jeong Y. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.13-16
    • /
    • 2005
  • For mass production, usually injection mold has multi-cavity which is filled through geometrical balanced runner system. Despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed. These filing imbalances are one of the most significant factors to affect quality of plastic parts when molding plastic parts in multi-cavity injection mold. Filling imbalances are results from non-symmetrical shear rate distribution within melt as it flows through the runner system. It has been possible to decrease filling imbalance by optimizing processing conditions, but it has not completely eliminated this phenomenon during injection molding processing. This paper presents a solution of these filling imbalances through using 'runner core pin'. The runner core pin which is developed in this study creates a symmetrical shear distribution within runner. As a result of using runner core pin, a remarkable improvement in reducing filling imbalance was confirmed.

  • PDF

Stability analysis of roof-filling body system in gob-side entry retained

  • Jinlin Xin;Zizheng Zhang;Weijian Yu;Min Deng
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.27-37
    • /
    • 2024
  • The roof-filling body system stability plays a key role in gob-side entry retained (GER). Taking the GER of the 1103 belt transportation roadway in Heilong Coal Mine as engineering background, stability analysis of roof-filling body system was conducted based on the cusp catastrophe theory. Theoretical results showed that the current design parameters of 1103 belt transportation roadway could ensure the roof-filling body system stable during the resistance-increasing support stage of the filling body and the stable support stage of the filling body. Moreover, a verified global numerical model in FLAC3D was established to analyze the failure characteristics including surrounding rock deformation, stress distribution, and plastic zone. Numerical simulation indicated that the width-height ratio of the filling body had a great influence on the stability of the roof-filling body system. When the width-height ratio was greater than 0.62, with the decrease of the width-height ratio, the peak stress of the filling body gradually decreased; when the width-height ratio was greater than 0.92, as the distance to the roadway increased, the roof stress increased and then decreased. The theoretical analysis and numerical simulation findings in this study provide a new research method to analyze the stability of the roof-filling body system in GER.

QUANTITATIVE ANALYSIS OF MARGINAL MICROLEAKAGE IN VARIOUS RETROGRADE FILLING MATERIALS AND PREPARATION TYPES (역행충전시 수복재와 와동 형태에 따른 변연누출의 정량적 분석)

  • Han, Chung-Kyeung;Yang, Hong-So
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.1
    • /
    • pp.97-105
    • /
    • 1990
  • When conventional root canal treatment is failed or contraindicated, retrograde root canal filling following apicoectomy is a valuable procedure, aimed at hermetically sealing the root canal against leakage of irritants from the canal into the periapical tissue. In this in vitro investigation, to analyze apical microleakage electrochemically in teeth with different retrograde filling materials and preparation types, single - rooted tooth was cut 2mm from the apex and each Class I and Slot preparation was prepared. Experimental groups : Group 1. Amalgam filling with cavity varnish in Class I preparation Group 2. Scotchbond 2+Silux filling in Class I preparation Group 3. Gutta percha filling with ZOE cement in Class I preparation Group 4. Amalgam filling with cavity varnish in Slot preparation Group 5. Scotchbond 2+Silux filling in Slot preparation Each specimens was immersed in 1% solution of KCl, and applied a potential of 9V external power supply. Measurements of the current flow were obtained at 1, 2, 3, 7, 9, 12, 14, 18, 21, 25 and 28 day after immerson. Marginal microleakage were compared and evaluated. The results were as follows ; 1. The group filled with composite resin with dentin bonding agent shows lower apical microleakage value than the group filled with amalgam following varnish application (P<0.01). 2. In the group filled with gutta percha, apical microleakage value was the hightest 3. There was no significant difference between Class I cavity and Slot type cavity regardless of the used materials.

  • PDF

On the new mold structure with multi-point gate for filling-balance mold (사출성형시 불균형 충전에 관한 다구찌 실험계획법을 이용한 성형공정의 최적화)

  • Hong, Youn-Suk;Han, Dong-Hyup;Jeong, Yeong Deug
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.13-16
    • /
    • 2007
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance have been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and polymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system.

  • PDF

Studies on the Duration and Rate of Grain Filling in Rice (Oryza sativa L.) II. Difference between the Parts of a Panicle (수도의 등숙기간 및 등숙속도 연구 II. 이삭의 부위별 차이)

  • Cho, Dong-Sam;Jong, Seung-Keun;Son, Suk-Yeong;Park, Yeon-Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.1
    • /
    • pp.5-11
    • /
    • 1988
  • Varietal differences of grain filling duration and rate are generally recognized in rice (Oryza sativa L.). But the differences of grain filling characteristics between the parts within a panicle might be present since it takes 6-8 days to finish anthesis in a panicle. To elucidate this, 6 Japonica and 6 Japonica/Indica varieties were grown under three nitrogen levels at the Experimental Farm of Chungbuk National University in 1986, and grain filling characteristics of top, middle and bottom parts of a panicle were analyzed. Rice grain filling duration could be divided into 3 phases, i.e., Lag phase(LP) of 5 days after heading. Linear increasing period (LIP) of 5-20 days after heading and Late filling period (LFP) thereafter. Grain weight difference between the panicle parts was greater during LIP in all the varieties and was decreased during LFP. The difference was greater in Japonica/Indica varieties. Samgangbyeo and Seomjinbyeo had the shortest and the longest grain filling durations with 22.6 and 37.1 days, respectively. In average, grain filling duration of the bottom part of a panicle was 1-2 days shorter than that of top or middle part. The differences were negligible in Daecheongbyeo, Taebaegbyeo and Milyang 23, while it was greater in Tongil with 4.9 days. Grain filling rates were ranged from 0.612 to 1.097 mgㆍgrain$^{-1}$ㆍday$^{-1}$ㆍMilyang 23 showed the lowest rate with 0.612-0.682 mgㆍgrain$^{-1}$ㆍday$^{-1}$, while the rates of Baegyangbyeo, Yongmoonbyeo, Samgangbyeo, Nongbaeg and Daeseongbyeo were about 1 mgㆍgrain$^{-1}$ㆍday$^{-1}$ㆍGrain filling rate of bottom part of a panicle was lower than that of top or middle part. The difference was samll in Nongbaeg and Daeseongbyeo, while it was the greatest in Tongil with 0.222 mgㆍgrain$^{-1}$ㆍday$^{-1}$. Grain filling duration and rate were not afftected by nitrogen level, but varietal and spatial differences of grain filling characteristics were highly significant. However, the spatial difference of grain filling rates within a variety was not significant. Grain filling characteristics of each part of a panicle were significantly correlated (r=0.7207-0.9879) with those of a whole panicle.

  • PDF

A Study on the Model Test for Pneumatic Mine-Filling (공압식 갱내충전을 위한 모형실험 연구)

  • Yang, In-Jae;Shin, Dong-Choon;Yoon, Byung-Sik;Mok, Jin-Ho;Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.449-463
    • /
    • 2014
  • There are many case studies and application cases in abandoned mines for hydraulic filling method filled by slurry or paste form, but research on the pneumatic filling is not applied in Korea. The damage of steel pipe is occurred by wear due to the flow of filling material in the bent area of steel pipe in traditional pneumatic filling method. In this study, the new pneumatic filling method was developed using a newly devised improved nozzle to improve the above problem. The model test for mine filling was performed in the laboratory for the simulated accessible or inaccessible mine cavities, and the filling efficiency by the results obtained from the test was calculated. The filling efficiency was analyzed from the variation of outlet angle, feed rate and grain size of sand in model test of simulated accessible mine cavity. The superiority of improved pneumatic filling method was proved through the analysis of filling efficiency by the results obtained from each model tests of gravitational, traditional, and improved filling method in simulated inaccessible mine cavity.

A SCANNING ELECTRON MICROSCOPIC STUDY ON THE ADAPTATION OF ROOT CANAL FILLING MATERIAL TO ROOT CANAL WALL WITH AND WITHOUT SMEAR LAYER (Gutta percha 충전시 도말층 유무에 따른 근관벽과의 접합도에 관한 주사전자현미경적 연구)

  • Moon, Joo-Hoon;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.365-382
    • /
    • 1992
  • The purpose of this study was to evaluate the adaptation of filling material to the dentinal walls of root canals with and without smear layer. Fifty extracted upper and lower anterior teeth were selected, and the root canals were instrumented with K - files 1mm short of the apical foramen by step - back method. The teeth were randomly divided into two groups of 25 each : in the group I, smear layers were not removed, and in the group II, smear layers were removed by 15% EDTA solution. Again the two groups 25 teeth were randomly divided into unfilled contol group and filling groups(lateral, ultrasonic, ULTRAFIL, McSpadden compaction group). Upon completion of root canal filling, the teeth were grooved on the both the labial and lingual surfaces and then split with mallet and chisel. Each specimens were examined with JSM - 840 Scanning Electron Microscope (JEOL., Japan). The results were as follows : 1. In the contol group, dentinal tubules of group I couldn't be distinguished in the canal wall, but those of group II appeared to be open and patent. 2. In the filling groups of group I, the tubular penetration of the sealer or gutta percha couldn't be seen, but in the filling groups of group II, it could be seen except McSpadden compaction group. 3. In the filling groups, ULTRAFIL group showed the best adaptation of filling material to root canal wall among the group I, and lateral and ultrasonic condensation group showed the best adaptation of filling material among the group II. McSpadden compaction group showed the worst adaptation in group I, II. 4. Generally, the group II showed better adapation of filling material to root canal wall than the group I.

  • PDF

Pressure Drop Analysis on Filling of Hydrogen Fuel Cell Vehicles (수소연료전지 차량 충전에서의 압력강하 분석)

  • Hyo Min Seo;Byung Heung Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.38-47
    • /
    • 2023
  • In the hydrogen filling process, hydrogen flows by the pressure difference between the supply pressure at a filling station and a storage tank in the vehicle, and the flow rate depends on the pressure difference. Therefore, it is essential to consider the pressure drop of hydrogen occurring during the filling process, and the efficiency of the hydrogen filling process can be improved through its analysis. In this study, the pressure drop was analyzed for a hose, a nozzle/receptacle coupling, a pipe, and a valve in a filling line. The pressure drops through hose and pipe, the nozzle,receptacle coupling, and the valve were calculated by using a equation for a straight conduit, a flow nozzle formula, and a gas flow respectively. In addition, as a result of comprehensive analysis of the pressure drop effect occurring in each component, it was found that the factor that has the greatest influence on the pressure drop in the entire filling line is the pressure drop through the valve. This study can be used to develop a model of the hydrogen filling process by analyzing hydrogen flow including hydrogen filling in the future.

Copper Via Filling Using Organic Additives and Wave Current Electroplating (유기물 첨가제와 펄스-역펄스 전착법을 이용한 구리 Via Filling에 관한 연구)

  • Lee, Suk-Ei;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • Copper deposition studies have been actively studied since interests on 3D SiP were increased. The defects inside via can be easily formed due to the current density differences on entrance, bottom and wall of via. So far many different additives and current types were discussed and optimized to obtain void-free copper via filling. In this research acid cupric sulfate plating bath containing additives such as PEG, SPS, JGB, PEI and wave current applied electroplating were examined. The size and shape of grain were influenced by the types of organic additives. The cross section of specimen were analyzed by FESEM. When PEI was added, the denser copper deposits were obtained. Electroplaing time was reduced when 2 step via filling was employed.

  • PDF