DOI QR코드

DOI QR Code

Stability analysis of roof-filling body system in gob-side entry retained

  • Jinlin Xin (Key Laboratory of Coal Mine Gas and Roof Disaster Prevention and Control, Hunan University of Science and Technology) ;
  • Zizheng Zhang (Key Laboratory of Coal Mine Gas and Roof Disaster Prevention and Control, Hunan University of Science and Technology) ;
  • Weijian Yu (Key Laboratory of Coal Mine Gas and Roof Disaster Prevention and Control, Hunan University of Science and Technology) ;
  • Min Deng (Key Laboratory of Coal Mine Gas and Roof Disaster Prevention and Control, Hunan University of Science and Technology)
  • Received : 2021.08.18
  • Accepted : 2023.11.28
  • Published : 2024.01.10

Abstract

The roof-filling body system stability plays a key role in gob-side entry retained (GER). Taking the GER of the 1103 belt transportation roadway in Heilong Coal Mine as engineering background, stability analysis of roof-filling body system was conducted based on the cusp catastrophe theory. Theoretical results showed that the current design parameters of 1103 belt transportation roadway could ensure the roof-filling body system stable during the resistance-increasing support stage of the filling body and the stable support stage of the filling body. Moreover, a verified global numerical model in FLAC3D was established to analyze the failure characteristics including surrounding rock deformation, stress distribution, and plastic zone. Numerical simulation indicated that the width-height ratio of the filling body had a great influence on the stability of the roof-filling body system. When the width-height ratio was greater than 0.62, with the decrease of the width-height ratio, the peak stress of the filling body gradually decreased; when the width-height ratio was greater than 0.92, as the distance to the roadway increased, the roof stress increased and then decreased. The theoretical analysis and numerical simulation findings in this study provide a new research method to analyze the stability of the roof-filling body system in GER.

Keywords

Acknowledgement

The project was supported by the Key Research and Development Special Tasks of Xinjiang Province (No. 2022B01051), Key projects of the Joint Fund of the National Natural Science Foundation of China (No. U21A20107), the Open Fund of the State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology (No. SKLMRDPC20KF08), and Funded by the Excellent Youth Fund of the Education Department of Hunan Province (Grant No. 21B0487).

References

  1. Bali, B.A.M. and Mishra, B. (2021), "Determination of suitable pillar size for protecting gas well drilled through a longwall mining abutment pillar using numerical modelling approach: a case study", Geotech. Geol. Eng., 39(2), 1329-1347. https://doi.org/10.1007/s10706-020-01561-6.
  2. Chang, Q.L., Tang, W.J., Xu, Y. and Zhou, H.Q. (2018), "Research on the width of filling body in gob-side entry retaining with high-water materials", Int. J. Min. Sci. Technol., 28(3), 519-524. https://doi.org/10.1016/j.ijmst.2017.12.016.
  3. Chau, K.T. (1995), "Landslides modeled as bifurcations of creeping slopes with nonlinear friction law", Int. J. Solids Structures, 32(23), 3451-3464. https://doi.org/10.1016/0020-7683(94)00317-P.
  4. Esterhuizen, E., Mark, C. and Murphy, M.M. (2010), "Numerical model calibration for simulation coal pillars, gob and overburden response", Proceeding of the 29th International Conference on Ground Control in Mining, Morgantown, USA, January.
  5. Fu, J.X., Song, W.D. and Tan, Y.Y. (2018), "Study of stability and evolution indexes of gobs under unloading effect in the deep mines", Geomech. Eng., 14(5), 439-451. https://doi.org/10.12989/gae.2018.14.5.439.
  6. Guo, P.F., Zhang, X.H., Peng, Y.Y., He, M.C., M,a C.R. and Sun, D.J. (2020), "Research on deformation characteristic and stability control of surrounding rock during gob-side entry retaining", Geotech. Geol. Eng., 38(3), 2887-2902. https://doi.org/10.1007/s10706-020-01194-9.
  7. Han, C.L., Zhang, N., Ran, Z., Gao, R. and Yang, H.Q. (2018), "Superposed disturbance mechanism of sequential overlying strata collapse for gob-side entry retaining and corresponding control strategies", J. Central South Univ., 25(9), 2258-2271. https://doi.org/10.1007/s11771-018-3911-8.
  8. Kim, B.H. and Larson, M.K. (2019), "Development of a fault-rupture environment in 3D: A numerical tool for examining the mechanical impact of a fault on underground excavations", Int. J. Min. Sci. Technol., 29(1), 105-111. https://doi.org/10.1016/j.ijmst.2018.11.008.
  9. Kim, J.S., Kim, G.Y., Baik, M.H., Finsterle, S. and Cho, G.C. (2019), "A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission", Geomech. Eng., 18(1), 11-20. https://doi.org/10.12989/gae.2019.18.1.011.
  10. Kong, D.Z., Pu, S.J., Cheng, Z.H., Wu, G.Y. and Liu, Y. (2021), "Coordinated deformation mechanism of the top coal and filling body of gob-side entry retaining in a fully mechanized caving face", Int. J. Geomech., 21(4), 04021030. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001972.
  11. Kwon, S. and Lee, C. (2018), "THM analysis for an in situ experiment using FLAC3D-TOUGH2 and an artificial neural network", Geomech. Eng., 16(4), 363-373. http://dx.doi.org/10.12989/gae.2018.16.4.363.
  12. Lee, C., Lee, J. and Kim, G.Y. (2021), "Numerical analysis of coupled hydro-mechanical and thermo-hydro-mechanical behaviour in buffer materials at a geological repository for nuclear waste: Simulation of EB experiment at Mont Terri URL and FEBEX at Grimsel test site using Barcelona basic model", Int. J. Rock Mech. Min. Sci., 139, 104663. https://doi.org/10.1016/j.ijrmms.2021.104663.
  13. Li, T., Chen, G.B., Qin, Z.C., Li, Q.H., Cao, B. and Liu, Y.L. (2020), "The gob-side entry retaining with the high-water filling material in Xin\'an Coal Mine", Geomech. Eng., 22(6), 541-552. https:// doi.org/10.12989/gae.2020.22.6.541.
  14. Liu, X.S., Ning, J.G., Tan, Y.L., Xu, Q. and Fan, D.Y. (2018), "Coordinated supporting method of gob-side entry retaining in coal mines and a case study with hard roof", Geomech. Eng., 15(6), 1173-1182. https://doi.org/10.12989/gae.2018.15.6.1173.
  15. Li, Z.L., Shan, R.L., Wang, C.H., Yuan, H.H. and Wei, Y.H. (2020), "Study on the distribution law of stress deviator below the floor of a goaf", Geomech. Eng., 21(3), 301-313. https://doi.org/10.12989/gae.2020.21.3.301.
  16. Morsy, K. and Peng, S. (2002), "Numerical modeling of the gob loading mechanism in longwall coal mines", Proceeding of the 21th International Conference on Ground Control in Mining, Morgantown, USA, January.
  17. Smart, B.G.D. and Haley, S.M. (1987), "Further development of the roof strata tilt concept for pack design and the estimation of stress development in a caved waste", Int. J. Min. Sci. Technol., 5(2), 121-130. https://doi.org/10.1016/S0167-9031(87)90355-0.
  18. Tan, Y.L., Ma, Q., Zhao, Z.H., Gu, Q.H., Fan, D.Y., Song, S.L. and Huang, D.M. (2019), "Cooperative bearing behaviors of roadside support and surrounding rocks along gob-side", Geomech. Eng., 18(4), 439-448. https://doi.org/10.12989/gae.2019.18.4.439.
  19. Thom, R. (1975), Structural stability and morphogenesis. Reading: W.A. Benjamin, Inc.
  20. Wang, C.L., Li, G.Y., Gao, A.S., Shi, F., Lu, Z.J. and Lu, H. (2018), "Optimal pre-conditioning and support designs of floor heave in deep roadways", Geomech. Eng., 14(5), 429-437. https://doi.org/10.12989/gae.2018.14.5.429.583.
  21. Wang, H.S., Zhang, D.S., Liu, L., Guo, W.B., Fan, G.W., Song, K. and Wang, X.F. (2016), "Stabilization of gob-side entry with an artificial side for sustaining mining work", Sustainability, 8(7), 627. https://doi.org/10.3390/su8070627.
  22. Wang, X.R., Guan, K., Yang, T.H. and Liu, X.G. (2021), "Instability mechanism of pillar burst in asymmetric mining based on cusp catastrophe model", Rock Mech. Rock Eng., 54(3), 1463-1479. https://doi.org/10.1007/s00603-020-02313-x.
  23. Yadav, A., Behera, B., Sahoo, K., Singh, G.S.P. and Sharma, S.K. (2020), "Numerical analysis of the gob stress distribution using a modified elastic model as the gob constitutive model", J. Institution of Engineers (India): Series D, 101(1), 127-139. https://doi.org/10.1007/s40033-020-00214-5.
  24. Yang, H.Y., Liu, Y.B., Cao, S.G., Pan, R.K., Wang, H., Li, Y. and Luo, F. (2020), "A caving self-stabilization bearing structure of advancing cutting roof for gob-side entry retaining with hard roof stratum", Geomech. Eng., 21(1), 23-33. https://doi.org/10.12989/gae.2020.21.1.023.
  25. Zhang, F.T., Wang, X.Y., Bai, J.B., Wang, G.Y. and Wu, B.W. (2020), "Post-peak mechanical characteristics of the high-water material for backfilling the gob-side entry retaining: from experiment to field application", Arabian J. Geosci., 13(9), 386. https://doi.org/10.1007/s12517-020-05369-9.
  26. Zhang, Z.Z., Deng, M., Bai, J.B., Yan, S. and Yu, X.Y. (2021), "Stability control of gob-side entry retained under the gob with close distance coal seams", Int. J. Min. Sci. Technol., 31(2), 321-332. https://doi.org/10.1016/j.ijmst.2020.11.002.
  27. Zhang, Z.Z. (2016). Investigation on stability mechanism and control techniques of immediate roof above backfill area in gob-side entry retaining, PhD dissertation, China University of Mining and Technology.