• 제목/요약/키워드: fig plant

검색결과 67건 처리시간 0.024초

원예시험장 주변의 진딧물 (Flying Aphid Population at the Horticultural Experiment Station, Suweon)

  • 백운하;송기원;최성식
    • 한국응용곤충학회지
    • /
    • 제13권1호
    • /
    • pp.25-31
    • /
    • 1974
  • 원예작물을 종합적으로 재배하는 원예시험장에서 원예작물에 직접, 간접으로 많은 피해를 주고있는 진딧물을 Yellow Water Trap을 5월 1일부터 10월 31일까지 설치하여 조사한바 다음과 같은 결과를 얻었다. 1. 본 시험장시는 24종의 매개진딧물을 포함하여 120여종이 분포되어 있다. 2. 본 시험장에 분포된 120여종 중에$75\%$ 이상을 차지하는 우세종 10종은 다음과 같다. * 조급나무진딧물(Aphis spiraecola $P_{ATCH}$) * 아카시아진딧물(Aphis craccivora $K_{OCH}$) * 복숭아혹진딧물(Myzus persicae $S_{ULZER}$) 자바못털진딧물(Capitophorus hippophaes javanicus H.R. $L_{AMBERS}$) 층층나무진딧물(Anoecia fulviabdominalis $S_{ASAKI}$) * 목화진딧물(Aphis gossypii $G_{LOVER}$) * 보리수염진딧물(Macrosiphum avenae $F_{ABRICIUS}$) 가시 진딧물(Cervaphis quercus $T_{AKAHASHI}$) * 무우테두리진딧물(Lipaphis erysimi $K_{ALTENBACH}$) 쑥못털진딧물식물(Pleotrichophorus chrysanthemi $T_{HEOBALD}$)(* : 바이러스매개진딧물) 3. 식물바이러스를 매개하는 24종의 진딧물은 전체 진딧물수의 $55\%$를 차지한다. 4. 본시험장의 진딧물 발생소장을 수원의 4개년(1967-'70) 것과 비교한 바 작물이 자라는 봄. 여름에는 살충제를 뿌리기 때문에 수원의 밀도보다 낮으나 작물의 수확이 끝난 10월에는 살충제살포를 중지하고 또 이 시기는 진딧물이 월동숙주로 이주하기 때문에 10월 중순에 밀도가 갑자기 상승하여 년중 최고곡선을 이룬다. 5. 진딧물 방제를 위해서 작물에만 살충제를 살포하는 것으로 그치는데 주위의 잡초나 숙주식물에도 아울러 살포해야한다. 그리고 작물의 수확이 끝난 10월중에도 원동숙주에 살충제를 살포하여 진딧물의 월동량을 감소시키므로써 다음해 봄에 발생량을 감소시키는 예비책을 써야한 것이다. 진딧물은 원예작물에는 어느 해충보다도 피해가 크다는 것은 주지의 사식이나 이것의 발생은 해에 따라, 기상조건의 변화에 따라 달라지므로 한번의 조사로는 만족할 수 없다. 그러므로 앞으로 영구적인 사업으로 매년 발생상황을 계속적으로 조사해야 될 줄로 믿는다.

  • PDF

한국잔디(Zoysia japonica Steud.)의 예초후 재생과정에 따른 이화적, 동화적 생화학변화에 관한 연구 (Biochemical Changes of Dissimilation and Assimitation in Zoysia japonica Steud during the Regrowth Process after mowing)

  • 장남기;김형기;유준희;김용진;임채성
    • 아시안잔디학회지
    • /
    • 제1권1호
    • /
    • pp.56-68
    • /
    • 1987
  • During the regrowth the process after mowing, NRA in the leaf was the highest activity from the 5th day to the 7th day. Before mowing, the NRA in the root was not almost detected. But, the NRA in root appeared a rapid increasing activity from the 3rd day to the 4th day after mowing ( Figs.27 ~ 32). During the regrowth process after mowing, a general tendency of AA in the aboveground parts appeared an increasing tendency from the 1st day to the 4th day, a rapid increasing tendency from the 7th day to the 8th day reaching its peak, and a decreasing rate on the 8th and 9th day reaching its peak, and a decreasing rate on the 8th and 9th day. But the AA in the root appeared rapid increasing rate from the 2nd day to the 7th day, the heginning of reagrowth, this tendency showed a similar figure in the case of Total Soluble Carbohydrate ( TSC) in the internode. Both AA and NRA were appeared recovery stage frorn the 8th day after mowing(Figs.15~20). During the regrowth process after mowing, changes of the maximum plant lengths were 18.27cm in the 6cm mowing plot on the 24th day after mowing, 18.83cm in the 3cm mowing plot on the 18th day after mowing, and 18.16cm in the 6cm mowing plot on the 14th day after mowing ( Fig.2). During the regrowth process after mowing. changes in Dry Matter (DM) contents in leaf and stem were a slow decreasing tendency from the 1st day to the 4th day. From the 5th day to the 8th day it appeared a rapid increasing tendency. And afterward until the 15th day. All treatments were reached at a steady state ( Figs.3 ~ 8). During the regrowth process after mowing, changes in the TSC contents of stem and crown were a slow decreasing tendency from the 1st day to the 5-6th day. Prom the 7th to the 8th day three was a rapid increasing tendency. And afterward until the 15th day there was a decreasing rate at a steadyv state. In root there was a similar tendency to that of leaf and stem organs. A general tendency in internode, the TSC content appeared a similar figure to increment of AA (Figs. 9 - 14). During the regrowth process after mowing, changes in te Crude Proem (CP) content of ahoveground parts appeared a slow increasing tendency from the 1st day to the 5-6th day, where it is peak. And afterward to the 15th day there was a decreasing rate at a steady state. But, in toot there were a contrary tendency to that of aboveground

  • PDF

거세한우 육량향상을 위한 알칼로이드계열 천연물 이용 사료첨가제 개발 (Development of Natural Alkaloid-feed Additive for Enhancing Yield Grade of Hanwoo Steers)

  • 강동훈;박보혜;장선식;정기용
    • 현장농수산연구지
    • /
    • 제26권2호
    • /
    • pp.31-40
    • /
    • 2024
  • 표준물질 Alpha-chaconine과 alpha-solanine에 대한 LC-MS 분석을 통해서 농도별 기준을 정하고 추출시료의 농도를 정량분석 하였다. LC-MS 분석을 통한 정량선 작성 결과 두 화합물 모두 0.16~5,000ng/mL 농도 구간에서 검량선을 확인할 수 있었다. 건조시료에서 alphachaconine 2.05mg/g, alpha-solanine 0.60mg/g으로 총합 2.65mg/g의 알칼로이드를 함유한 것으로 나타났다. 열수추출물의 경우 총합 2.23mg/g, 에탄올 추출물에서는 총합 0.52mg/g으로 알칼로이드 함량이 에탄올 추출물에서 가장 낮게 나타났다. 아트로핀 표준물질에 대한 LC-MS 분석 결과 m/z 290의 SIM mode에서 검출하였다. 가지와 토마토 추출물에서 아트로핀 화합물이 미검출 되었으며, 실험에 사용된 시료에서는 아트로핀 화합물의 함유가 작아 정량분석에 적합하지 않은 것으로 나타났다. Fig. 8에 나타나는 제1위 소화율 시험에서 감자와 Zilmax를 첨가한 시료에서 유의적으로 소실이 진행되었고 가지의 경우 완만하게 소실되었다. 소실되는 건물내 존재하는 글라이코 알칼로이드 농도를 측정해 본 결과 α-solanine과 α-chaconine 농도 모두가 감소하였고 특히 섭취 후 8시간에서 12시간 내에 완전 소화되는 것을 확인하였다. 알칼로이드 사료첨가물을 20일간 급여한 거세한우 32두의 혈액 내 대사물질을 측정한 결과 유리지방산(NEFA)의 경우 가지처리구와 대조구에서는 다른 대사물질과 유사하게 증가하였는데 Zilmax와 감자 처리구에서는 반대로 감소하는 현상을 나타내었다. 이러한 결과로 감자추출물이 유리지방산에 작용기작이 β-adrenergic agonist인 Zilmax와 유사한 작용을 한다는 것을 알 수 있었다.

수도(水稻)에 처리(處理)된 유기수은제(有機水銀劑)의 잔류성(殘留性)에 관(關)한 연구(硏究) -제1보(第1報) 침지용유기수은제(浸漬用有機水銀劑)로 처리(處理)된 수도종자중(水稻種子中)의 수은잔류량(水銀殘留量)에 관(關)하여- (Studies on the Organo-mercury Residues in Rice Grain -I. Mercury residues in rice seeds treated with organo-mercury fungicide-)

  • 이동석
    • Applied Biological Chemistry
    • /
    • 제8권
    • /
    • pp.87-93
    • /
    • 1967
  • acaricide로 알려진 phthalimidomethyl O,O-dimethyl phosphorodithioat (Imidan)을 수도(水稻)에 살포(撒布)했을 때 Imidan과 그 대사물질(代謝物質)이 식물(植物)의 생육(生育)에 미치는 영향(影響)을 연구(硏究)하기 위하여 본(本) 실험(實驗)을 하였으며 이의 결과(結果)를 요약(要約)해 보면 다음과 같다. (1) Imian의 대사물질(代謝物質)로 예상(豫想)되는 다음의 8가지 화합물(化合物)을 합성(合成) 또는 정제(精製)하여 공시약제(供試藥劑)로 사용(使用)하였다. (a) N-Hydroxy methyl phthalimide (b) Phalimide (c) Phthalamdic acid (d) Phthalic acid (e) Anthranilic acid (f) p-amino benzoic acid (g) p-hydroxu benzoic acid (h) Benzoic acid (2) 상기(上記) 물질중(物質中)에서 (a),(c),(d),(e)와 Imidan의 각(各) 10 ppm과 20 ppm 의 Buffer Solution 을 만들어 밀 종자(種子)를 가지고 coleoptile straight growth test를 해 본 결과(結果) Imidan 은 10 ppm 과 20 ppm에서 모두 control 보다 생장(生長)의 촉진효과(促進效果)를 보였으며 기중(其中) phthalamidic acid 10 ppm 이 가장 좋은 성적(成績)을 보였다. 이것으로 보아 Imidan 자체(自體)는 생장(生長) 억제(抑制)의 효과(效果)를f 보이나 이것이 일단(一但) 생체내(生體內)에서 가수분해(加水分解)를 비롯한 각종(各種) 대사작용(代謝作用)을 받으면 그 대사산물(代謝産物)이 식물생장(植物生長)을 촉진(促進)하는 효과(效果)를 보이는 것 같다. (Table 1, Fig. 1 참조(參照)) (3) xylene을 용매(溶媒)로 하여 Imidan 유제(乳劑)를 만들고 이것을 희석(稀釋)하여 20 ppm, 100 ppm 및 200 ppm 의 각(各) 농도(濃度) 유화액(乳化液)을 조제(調製)한 후 이것을 배지(培地)로 하여 수도종자(水稻種子)를 발아(發芽)시킨 후 12 일(日)에 shoot와 root의 길이를 측정(測定)하였다. 이의 결과(結果)를 보면 root는 Imidan 20 ppm에서, shoot 는 Imidan 100 ppm에서 모두 xylene만의 유제구(乳劑區)인 control 보다 좋은 효과(效果)를 보였으며 여기에서 흥미(興味)있는 것은 용매(溶媒)로 사용(使用)된 xylene은 수도종자(水稻種子) 뿌리의 발육(發育)에 심(甚)한 억제효과(抑制效果)를 보이는 것 같다. (Table 2, Table 5 참조(參照)) (4) 벼를 pot에 심고 2회(回)에 걸쳐 control, Imidan, N-hydroxy methyl phthalimide, anthranilic acid 및 phthalimide의 10, 25, 50, 100 ppm 농도(濃度)의 각(各) 유제(乳劑)를 살포하고 일정기간후(一定期間後) 생육상(生育相)을 조사(調査)하였더니 Imidan 구(區)와 N-hydroxy methyl phthalimide 구(區)가 control 보다 좋은 성적(成績)을 보였다. (5) Imidan 250 ppm 유제(乳劑)를 수도엽면(水稻葉面)에 살포(撒布)하고 3 일(日), 5 일(日), 7 일(日) 및 14일후(日後)에 일정량(一定量)의 엽경(葉莖)을 채취(採取)하여 acetone으로 추출(抽出)k고 acetonitrile을 가지고 prechromatographic piriication 을 거쳐 paper chromatography에 의(依)하여 다음과 같은 대사물질(代謝物質)을 검출(檢出)하였다. Imidan $(Rf:\;0.97{\sim}0.98)$, N-hydroxy methyl phthalimide (Rf: 0.87), phthalimide $(Rf:\;0.86{\sim}0.87)$, phthalamidic acid $(Rf:\;0.13{\sim}0.14)$, phthalic acid $(Rf:\;0.02{\sim}0.03)$, benzoic acid $(Rf:\;0.42{\sim}0.43)$ 및 p-amino benzoic acid 또는 p-hydroxy benzoic acid $(Rf:\;0.08{\sim}0.09)$와 Rf=0.73, 0.59, 0.33, 0.23, 0.07의 미지물질(未知物質)을 검출(檢出)하였다. 또한 3일(日), 5일(日) 등(等) 초기(初期)에서는 미분해(未分解)의 Imidan과 최초(最初)의 가수분해(加水分解) 산물(産物)인 N-hydroxy methyl phthalimide등(等)이 비교적(比較的) 다량(多量)으로 검출(檢出)되었으나 7일(日), 14일(日) 등(等) 후기(後期)에는 생체내(生體內)에서 더 많은 분해(分解)를 받아 상기(上記) 이성분(二成分)은 양(量)이 감소(減少)되고 phthalic acid, phthalamidic acid benzoic acid 및 p-hydroxy benzoic acid 또는 p-amino benzoic acid등(等)의 양(量)이 증가(增加)되는 것을 볼 수있었으며 도체상(稻體上)에 살포(撒布)된 Imidan 은 체내(體內)에 흡수(吸收)되어 14일(日)이 경과(經過)되면 대부분(大部分)이 분해(分解)를 받는 것으로 보여진다. 이상(以上)의 결과(結果)로 보아 Imidan은 자체(自體)로서는 식물생장(植物生長) 촉진작용(促進作用)이 없으나 식물체내(植物體內)에서 여러 가지 대사작용(代謝作用)(enzyme의 작용(作用))을 맡아서 각종(各種) phthaloyl 영향(影響)을 주는 것으로 생각(生覺)된다.

  • PDF

논 생태 증진을 위해 설치된 둠벙의 물리.화학적 및 생물학적 특성 (Physicochemical and Biological Properties of Constructed Small-scale Ponds for Ecological Improvement in Paddy Fields)

  • 김재옥;신현상;유지현;이승헌;장규상;김범철
    • 생태와환경
    • /
    • 제44권3호
    • /
    • pp.253-263
    • /
    • 2011
  • 본 연구는 인공 조성된 둠벙의 물리 화학적 및 생물학적 특성을 분석하여 둠벙의 복원 및 관리를 위한 기초 자료를 얻고자 수행한 연구로 다음과 같은 결론을 도출하였다. 연구대상지 둠벙의 면적은 4.6~14.1 $m^2$였으며 모양은 원형과 사각형 모양이 대부분이었다. 조사 둠벙 중 가장 자리에 석축이나 목축을 두르지 않은 둠벙들은 주변 둑이 매몰되어 수심이 얕아져 둠벙의 기능을 잃을 수 있다. 따라서 지속적인 둠벙 기능 유지를 위해서는 주변에 석축이나 목축 등을 둘러 매몰되는 것을 방지할 필요가 있다. 연구대상지의 수질환경은 COD, TN, TP의 경우 농업용수 기준을 초과한 수질등급을 보였으며 특히 TN의 농도는 평균 8.03 mg $L-1$로 농업용수 수질기준을 약 8.0배를 초과하는 농도분포를 보였다. 조사지역 둠벙의 질소농도가 높은 원인으로는 홍성지역의 높은 축산 밀도, 농경지 주변 산재해 있는 축사 시설과 축산폐수를 이용한 저장 액비 사용에 의한 것으로 판단된다. 오히려 농촌지역에서 둠벙과 같은 작은 저류지가 하천으로 유출되는 영양물질을 저감시켜 주는 소규모 침전지 역할도 할 수 있을 것으로 사료된다. 연구대상지 둠벙의 평균적인 모래함량, 유기물 함량, 유효인산 함량은 각각 53.4${\pm}$16.6%, 21.8${\pm}$9.74 g $kg^{-1}$, 12.8${\pm}$7.59 mg $kg^{-1}$로 나타났다. 둠벙의 토양 특성 조사결과 모래함량과 유효인산 농도는 둠벙 안정화를 위한 식생정착에 적합한 농도분포였으나 신규로 조성된 5곳의 둠벙에서는 유기물 함량이 높지 않아 식생 정착에 다소 시간이 소요될 것으로 판단된다. 연구 대상지 둠벙의 어류상은 붕어, 미꾸리, 미꾸라지, 드렁허리 4종이 출현하였으며 군집구조 분석결과 군집 안정도와 다양도 지수가 불량하게 나타났다. 이와 같이 단순한 어류상 구조는 둠벙이 주변 하천과 고립된 구조를 가지고 있기 때문에 논과 정수지역, 농수로 등 연중 수위와 환경변화가 큰 환경에 적응한 어종들만이 서식할 수 있기 때문으로 판단된다. 요인분석에서 도출된 요인점수(Facter score)를 바탕으로 조사한 둠벙을 구분한 결과, 요인점수 1에서 양의 값을 보이는 둠벙은 다른 둠벙에 비해 둠벙의 크기가 큰 것들로 구성되었으며 (Group I), 요인점수 2에서 양의 값을 보인 Group III은 다른 둠벙에 비해 유기물 농도가 높은 둠벙들로(S5, S6) 구성되었다(Fig. 4). 본 연구를 바탕으로 향후 농촌지역 둠벙의 복원 및 효율적 관리를 위해서는 둠벙과 주변하천과의 연계성, 둠벙의 크기를 비롯한 구조적 특성을 잘 고려해야 할 것으로 판단된다. 본 연구에서 거론하지 못한 둠벙 용수의 유 출입량, 둠벙 수체내 먹이 연쇄 구조 등 세부적인 부분에 대한 연구를 추가적으로 진행해야 할 것으로 판단된다.

수환관개방법의 차이가 수도생육 및 수량에 미치는 영향과 그 적정시설에 관한 연구 (Studies on the Effects of Various Methods of Rotation Irrigation System Affecting on The Growth, Yield of Rice Plants and Its Optimum Facilities)

  • 이창구
    • 한국농공학회지
    • /
    • 제12권2호
    • /
    • pp.1937-1947
    • /
    • 1970
  • 본(本) 실험(實驗)은 1969년(年)에 만종(晩種) 농림(農林) 6호(號)를 공시품종(供試品種)으로하여 사질양토(砂質壤土)인 서울대학교(大學校) 농과대학(農科大學) 실험포장(實驗圃場)은 차용(借用)하여서 관개수(灌漑水)를 절약(節約)하고 또 그의 조절방법(調節方法)으로서 한해(旱害)를 극복(克服)하는 동시(同時)에 증수(增收)도 보자는 의미(意味)에서 윤환관개(輪換灌漑)의 방법(方法)과 그 적정시설(適正施設)로서 관배수로시설(灌排水路施設)과 취입구(取入口), 배입구(排水口), 밑다짐, 비닐사용(使用), 논두렁에 지수벽등(止水壁等)을 설치(設置)하여 벼의 생육(生育) 및 수량(收量)에 미치는 효과(效果)와 용수량(用水量) 관계(關係)를 시험(試驗) 조사(調査)하였는 바 그 결과(結果)를 요약(要約)하면 다음과 같다. (1) 밑다짐 두께와 단수일수(斷水日數)의 장단(長短)에 따라 천립중(千粒重)에서 유의성(有意性)을 보였는데 그 순서(順序)는 밑다짐 3cm 구(區), 밑다짐 6cm 구(區), 5일(日) 등등(等等) 방식(方式), 6일(日), 비닐처리구등(處理區等) 그림 10에서 보는 바와 같다. (2) 수량(收量)에 있어서는 밑다짐 9cm 구(區)가 31%증(增) 8일(日) 관개구(灌漑區)와 등등방식(等等方式)이 28%증(增) 5일관개구(日灌漑區)가 7% 증등(增等)은 상시(常時) 담수구(湛水區)보다 어느 것이나 상당(相當)한 증가(增加)를 보이고 있는데 그림 12와 같다. (3) 토양(土壤)의 이화학적(理化學的) 성질(性質)에는 차이(差異)가 없었으며 관개수질(灌漑水質) 기타(其他) 기상(氣象), 강우량등(降雨量等) 모든 값이 각(各) 처리구간(處理區間)에 동질(同質)이었다. (4) 각(各) 처리구(處理區)에 따라서 분(分)경 수(數)에 다소(多少)의 차이(差異)는 인정(認定)되나 강우일수(降雨日數)와 담천일수(曇天日數)가 전년(前年)보다 많었고 또 평균온도(平均溫度)가 다소(多少) 낮었기 때문에 유의성(有意性)은 인정(認定)할 수 없었다. (5) 비닐처리구(處理區)는 용수(用水)의 절약(節約)은 컸으나 기타(其他) 요소(要素)에 있어서는 유의성(有意性)을 인정(認定)하지 못하였다. (6) 관개용수량(灌漑用水量)에 있어서는 전관개일수(全灌漑日數) 102일중(日中) 강우일수(降雨日數) 54일(日)을 제(除)한 나머지 실지(實地)로 관개(灌漑)한 48일(日)에 있어서 밑다짐 9cm 구(區)와 비닐무공구(無孔區)가 243.3mm의 관개용수량(灌漑用水量)으로 족(足)하였으며 67%의 용수절약(用水節約)을 보았고 기타(其他)는 그림 15에서 보는 바와 같은 용수절약(用水節約)을 인정(認定)하였다. (7) 침투량(浸透量)은 $40{\sim}30mm/day$였든 것이 비닐지수벽(止水壁)을 설치(設置)한 구(區)에서는 10mm 정도(程度) 감소(減少)됨을 알 수 있다. (8) 생육상태(生育狀態)가 양호(良好)하며 일반(一般) 상시(常時) 담수구(水區)와 같은 병해(病害)나 도복(倒伏) 현상(現狀)은 발견(發見)되지 않았다. (8) 용배수조직(用排水組織)이 완비(完備)되고 각구(各區)마다 급수관(給水管)이 개별(個別)로 설치(設置)되어야 절수(節水)도 되고 답내(畓內)의 수온(水溫)도 상승(上昇)함을 알았다.

  • PDF

논벼 장.단간품종의 증발산제계수와 건물량과의 관계에 대한 연구(I) (Studies on Relations between Various Coeffcients of Evapo-Transpiration and Quantities of Dry Matters for Tall-and Short Statured Varieties of Paddy Rice)

  • 류한열;김철기
    • 한국농공학회지
    • /
    • 제16권2호
    • /
    • pp.3361-3394
    • /
    • 1974
  • The purpose of this thesis is to disclose some characteristics of water consumption in relation to the quantities of dry matters through the growing period for two statured varieties of paddy rice which are a tall statured variety and a short one, including the water consumption during seedling period, and to find out the various coefficients of evapotranspiration that are applicable for the water use of an expected yield of the two varieties. PAL-TAL, a tall statured variety, and TONG-lL, a short statured variety were chosen for this investigation. Experiments were performed in two consecutive periods, a seedling period and a paddy field period, In the investigation of seedling period, rectangular galvanized iron evapotranspirometers (91cm${\times}$85cm${\times}$65cm) were set up in a way of two levels (PAL-TAL and TONG-lL varieties) with two replications. A standard fertilization method was applied to all plots. In the experiment of paddy field period, evapotanspiration and evaporation were measured separately. For PAL-TAL variety, the evapotranspiration measurements of 43 plots of rectangular galvanized iron evapotranspirometer (91cm${\times}$85cm${\times}$65cm) and the evaporation measurements of 25 plots of rectangular galvanized iron evaporimeter (91cm${\times}$85cm${\times}$15cm) have been taken for seven years (1966 through 1972), and for TONG-IL variety, the evapotranspiration measurements of 19 plots and the evaporation measurements of 12 plots have been collected for two years (1971 through 1972) with five different fertilization levels. The results obtained from this investigation are summarized as follows: 1. Seedling period 1) The pan evaporation and evapotranspiration during seedling period were proved to have a highly significant correlation to solar radiation, sun shine hours and relative humidity. But they had no significant correlation to average temperature, wind velocity and atmospheric pressure, and were appeared to be negatively correlative to average temperature and wind velocity, and positively correlative to the atmospheric pressure, in a certain period. There was the highest significant correlation between the evapotranspiration and the pan evaporation, beyond all other meteorological factors considered. 2) The evapotranpiration and its coefficient for PAL-TAL variety were 194.5mm and 0.94∼1.21(1.05 in average) respectively, while those for TONG-lL variety were 182.8mm and 0.90∼1.10(0.99 in average) respectively. This indicates that the evapotranspiration for TONG-IL variety was 6.2% less than that for PAL-TAL variety during a seedling period. 3) The evapotranspiration ratio (the ratio of the evapotranspiration to the weight of dry matters) during the seedling period was 599 in average for PAL-TAL variety and 643 for TONG-IL variety. Therefore the ratio for TONG-IL was larger by 44 than that for PAL-TAL variety. 4) The K-values of Blaney and Criddle formula for PAL-TAL variety were 0.78∼1.06 (0.92 in average) and for TONG-lL variety 0.75∼0.97 (0.86 in average). 5) The evapotranspiration coefficient and the K-value of B1aney and Criddle formular for both PAL-TAL and TONG-lL varieties showed a tendency to be increasing, but the evapotranspiration ratio decreasing, with the increase in the weight of dry matters. 2. Paddy field period 1) Correlation between the pan evaporation and the meteorological factors and that between the evapotranspiration and the meteorological factors during paddy field period were almost same as that in case of the seedling period (Ref. to table IV-4 and table IV-5). 2) The plant height, in the same level of the weight of dry matters, for PAL-TAL variety was much larger than that for TONG-IL variety, and also the number of tillers per hill for PAL-TAL variety showed a trend to be larger than that for TONG-IL variety from about 40 days after transplanting. 3) Although there was a tendency that peak of leaf-area-index for TONG-IL variety was a little retarded than that for PAL-TAL variety, it appeared about 60∼80 days after transplanting. The peaks of the evapotranspiration coefficient and the weight of dry matters at each growth stage were overlapped at about the same time and especially in the later stage of growth, the leaf-area-index, the evapotranspiration coefficient and the weight of dry matters for TONG-IL variety showed a tendency to be larger then those for PAL-TAL variety. 4) The evaporation coefficient at each growth stage for TONG-IL and PAL-TALvarieties was decreased and increased with the increase and decrease in the leaf-area-index, and the evaporation coefficient of TONG-IL variety had a little larger value than that of PAL-TAL variety. 5) Meteorological factors (especially pan evaporation) had a considerable influence to the evapotranspiration, the evaporation and the transpiration. Under the same meteorological conditions, the evapotranspiration (ET) showed a increasing logarithmic function of the weight of dry matters (x), while the evaporation (EV) a decreasing logarithmic function of the weight of dry matters; 800kg/10a x 2000kg/10a, ET=al+bl logl0x (bl>0) EV=a2+b2 log10x (a2>0 b2<0) At the base of the weight of total dry matters, the evapotranspiration and the evaporation for TONG-IL variety were larger as much as 0.3∼2.5% and 7.5∼8.3% respectively than those of PAL-TAL variety, while the transpiration for PAL-TAL variety was larger as much as 1.9∼2.4% than that for TONG-IL variety on the contrary. At the base of the weight of rough rices the evapotranspiration and the transpiration for TONG-IL variety were less as much as 3.5% and 8.l∼16.9% respectively than those for PAL-TAL variety and the evaporation for TONG-IL was much larger by 11.6∼14.8% than that for PAL-TAL variety. 6) The evapotranspiration coefficient, the evaporation coefficient and the transpiration coefficient and the transpiration coefficient were affected by the weight of dry matters much more than by the meteorological conditions. The evapotranspiratioa coefficient (ETC) and the evaporation coefficient (EVC) can be related to the weight of dry matters (x) by the following equations: 800kg/10a x 2000kg/10a, ETC=a3+b3 logl0x (b3>0) EVC=a4+b4 log10x (a4>0, b4>0) At the base of the weights of dry matters, 800kg/10a∼2000kg/10a, the evapotranspiration coefficients for TONG-IL variety were 0.968∼1.474 and those for PAL-TAL variety, 0.939∼1.470, the evaporation coefficients for TONG-IL variety were 0.504∼0.331 and those for PAL-TAL variety, 0.469∼0.308, and the transpiration coefficients for TONG-IL variety were 0.464∼1.143 and those for PAL-TAL variety, 0.470∼1.162. 7) The evapotranspiration ratio, the evaporation ratio (the ratio of the evaporation to the weight of dry matters) and the transpiration ratio were highly affected by the meteorological conditions. And under the same meteorological condition, both the evapotranspiration ratio (ETR) and the evaporation ratio (EVR) showed to be a decreasing logarithmic function of the weight of dry matters (x) as follows: 800kg/10a x 2000kg/10a, ETR=a5+b5 logl0x (a5>0, b5<0) EVR=a6+b6 log10x (a6>0 b6<0) In comparison between TONG-IL and PAL-TAL varieties, at the base of the pan evaporation of 343mm and the weight of dry matters of 800∼2000kg/10a, the evapotranspiration ratios for TONG-IL variety were 413∼247, while those for PAL-TAL variety, 404∼250, the evaporation ratios for TONG-IL variety were 197∼38 while those for PAL-TAL variety, 182∼34, and the transpiration ratios for TONG-IL variety were 216∼209 while those for PAL-TAL variety, 222∼216 (Ref. to table IV-23, table IV-25 and table IV-26) 8) The accumulative values of evapotranspiration intensity and transpiration intensity for both PAL-TAL and TONG-IL varieties were almost constant in every climatic year without the affection of the weight of dry matters. Furthermore the evapotranspiration intensity appeared to have more stable at each growth stage. The peaks of the evapotranspiration intensity and transpiration intensity, for both TONG-IL and PAL-TAL varieties, appeared about 60∼70 days after transplanting, and the peak value of the former was 128.8${\pm}$0.7, for TONG-IL variety while that for PAL-TAL variety, 122.8${\pm}$0.3, and the peak value of the latter was 152.2${\pm}$1.0 for TONG-IL variety while that for PAL-TAL variety, 152.7${\pm}$1.9 (Ref.to table IV-27 and table IV-28) 9) The K-value in Blaney & Criddle formula was changed considerably by the meteorological condition (pan evaporation) and related to be a increasing logarithmic function of the weight of dry matters (x) for both PAL-TAL and TONG-L varieties as follows; 800kg/10a x 2000kg/10a, K=a7+b7 logl0x (b7>0) The K-value for TONG-IL variety was a little larger than that for PAL-TAL variety. 10) The peak values of the evapotranspiration coefficient and k-value at each growth stage for both TONG-IL and PAL-TAL varieties showed up about 60∼70 days after transplanting. The peak values of the former at the base of the weights of total dry matters, 800∼2000kg/10a, were 1.14∼1.82 for TONG-IL variety and 1.12∼1.80, for PAL-TAL variety, and at the base of the weights of rough rices, 400∼1000 kg/10a, were 1.11∼1.79 for TONG-IL variety and 1.17∼1.85 for PAL-TAL variety. The peak values of the latter, at the base of the weights of total dry matters, 800∼2000kg/10a, were 0.83∼1.39 for TONG-IL variety and 0.86∼1.36 for PAL-TAL variety and at the base of the weights of rough rices, 400∼1000kg/10a, 0.85∼1.38 for TONG-IL variety and 0.87∼1.40 for PAL-TAL variety (Ref. to table IV-18 and table IV-32) 11) The reasonable and practicable methods that are applicable for calculating the evapotranspiration of paddy rice in our country are to be followed the following priority a) Using the evapotranspiration coefficients based on an expected yield (Ref. to table IV-13 and table IV-18 or Fig. IV-13). b) Making use of the combination method of seasonal evapotranspiration coefficient and evapotranspiration intensity (Ref. to table IV-13 and table IV-27) c) Adopting the combination method of evapotranspiration ratio and evapotranspiration intensity, under the conditions of paddy field having a higher level of expected yield (Ref. to table IV-23 and table IV-27). d) Applying the k-values calculated by Blaney-Criddle formula. only within the limits of the drought year having the pan evaporation of about 450mm during paddy field period as the design year (Ref. to table IV-32 or Fig. IV-22).

  • PDF