• Title/Summary/Keyword: field-effect

Search Result 12,359, Processing Time 0.041 seconds

A Study of Carbon Nanotube Channel Field-Effect Devices (탄소 나노튜브 채널을 이용한 전계효과 이온-전송 소자 연구)

  • Lee, Jun-Ha;Lee, Hoong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.168-174
    • /
    • 2006
  • We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that can be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, thermal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.

  • PDF

Generation of Visual Field Considering 8 Meridians and Background Conditions of Visual Tasks (시각작업의 배경 조건과 8개 Meridian을 고려한 시각영역의 생성)

  • Kee, Do-Hyung;Kim, Hyung-Su;Jung, Eui-S.;Kang, Dong-Seok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.3
    • /
    • pp.533-544
    • /
    • 1997
  • Among numerous factors that have an effect on visual field, the effects of background condition on the size of the visual field were investigated to obtain more practical visual field that can be readily applicable to industrial settings. A visual experiment was conducted, in which the subject was instructed to search a target with distinct orientations. Size contrast, meridian, nontarget density, and subject's gender showed a significant effect on the size of the visual field at $\alpha=0.01$. The size of the visual field was linearly proportional to size contrast, and inversely proportional to density. Female's visual fields were found to be significantly larger than male subjects', The size of the visual field on horizontal axis was larger than that on vertical axis, and the size of the head & eye field on right meridian was also larger than that on left meridian. The shape was found to be horizontally oriented oval and statistically asymmetric with respect to horizontal and vertical axes. The regression equations to predict the visual fields on the given background condition were suggested. The visual fields suggested in this study would be valuable to the design of visual displays and the panel layout of various displays and controls.

  • PDF

Generation of a practical visual field for the design and evaluation (제품설계와 평가를 위한 시각영역의 생성)

  • 기도형
    • Journal of the Ergonomics Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.59-67
    • /
    • 1995
  • Depending upon the eye and head movement, the visual field is often classified into three categories ; stationary field, eye field and head and eye field. To investigate the effect of background condition on the size of the visual field, an experiment was conducted, in which the subject was instructed to search a target with distinct orientations. In each trial, a single target was presented on the perimeter modified to cover the range of 330 .deg. around the fixation point, with the visual angle subtended 1.4 .deg. vertically and horizontally. Nontarget density, meridian, size contrast and subject showed a significant effect on the visual field at .alpha. =0.01, where density was inversely proportional to the size of the visual field, and size contrast linearly proportional to the size of the visual field. The size of the visual field on horizontal axis was larger than that on vertical axis, and that on right and upper meridian was also larger than on left and lower meridian. The shape was found to be horizontally oriented oval and statistically asymmetric with respect to horizontal and vertical axes. In addition, the regression equations to predict the visual field on the given background condition were suggested. These results were expected to be used as a design guideline when arranging displays and controls on panels such as automobile display panels, cockpits, etc.

  • PDF

Linear Free Energy Relationship on the Phosphorylation of Acetylcholinesterase by Insecticidal O,O-Diethylphenylphosphate Derivatives (살충성(殺蟲性) O,O-Diethylphenylphosphate유도체(誘導體)들에 의(依)한 Acetylcholinesterase의 Phosphorylation에 미치는 자유(自由)에너지 관계(關係))

  • Sung, Nack-Do
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.176-181
    • /
    • 1984
  • Linear free energy relation ship(LFER) on the insecticidal activity of O,O-diethylphenylphosphate (A) and 3,5-dimethylphenyl-O,O-diethylphosphate (B) derivatives were studied by EHT MO calculation method and regression analysis method. LFER between varying substituent constants and $pI_{50}$ constants of phosphates, (A) & (B) were calculated with applying Hammett, Okamoto-Brown, Taft and Swain-Lupton's DSP equations;percent resonance effect(R) and field effect(F) of (A) were %R=33.5 & %F=66.5 and also that of (B) were %R=2 & %F=98, respectively. On the basis of above findings, the insecticidal activities were similar for both (A) and (B), but (B) have larger field and inductive contribution than (A), due to the 3,5-dimethyl group of (B).

  • PDF

The Interaction of Vortex and Premixed Flame with Consideration of Volume Expansion Effect (체적팽창효과를 고려한 예혼합화염과 와동의 상호작용에 관한 연구)

  • Chung, Eui-Heon;Kwon, Se-jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1669-1680
    • /
    • 1998
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength assigned by the density difference between the burned and the unburned region. The present model provides good agreement with the experimental results. Including volume expansion, the flow field is adjusted to accommodate the increased volume flow rate which crossing the flame front and the result predicts the same behavior of measured velocity field qualitatively. The effect of increasing volume expansion does not change the initial growth rate of flame area but increase the residence time. Consequently this effect increases the maximum area of flame front. The flame propagation in varying flow field due to volume expansion provides a promising way to represent the wrinkled turbulent premixed flames in a numerically efficient manner.

Skin Effect of Rotating Magnetic Fields in Liquid Bridge

  • Zhang, Yi;Zeng, Zhong;Yao, Liping;Yokota, Yuui;Kawazoe, Yoshi;Yoshikawa, Akira
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.333-343
    • /
    • 2017
  • A rotating magnetic field (RMF) ${\Phi}_1-{\Phi}_2$ model was developed in consideration of the skin effect. The rotating magnetic field's induced three-dimensional flow was simulated numerically, and the influence of the skin effect was investigated. The rotating magnetic field drives the rotating convection in the azimuthal direction, and a secondary convection appears in the radial-meridional direction. The results indicate that ignoring the skin effect results in a smaller azimuthal velocity component and larger radial and axial velocity components, and that the deviation becomes more obvious with the larger dimensionless shielding parameter K.

SSFP Interferometry (SSFPI) Technique Applied to functional MRI - A Fast and Direct Measurement of Magnetic Susceptibility Effect (SSFPI 기법을 이용한 MR 뇌기능 영상 -고 속의 자화율 효과의 직접적인 측정)

  • 정준영
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.525-534
    • /
    • 1996
  • We have developed a fast steady state free precession interferometry (SSFPI) technique which is useful for the fMRl (functional Magnetic Resonance Imaging). As is known, SSFP sequence with a suitable adjustment of Vadient (readeut) allows us to measure precession angle 6 which in tw relates to the field inhomogeneity. Combining the two pulses (known as FID and Echo) in FADE (Fast Acquisition Double Echo) sequence, for example, one can obtain the interference term which is directly related to the precession angle It has been known that a fast high resolution magnetic field mapping is possible by use of the modified FADE sequence or SSFPI, and we have attempted to use the SSFPI technique for the susceptibility-induced fMRl. When the method is applied to the susceptibility effect based functional magnetic resonance imaging (fMRl), it was found that the direct susceptibility effect measurement was possible without perturbations such as the backgrounds and inflow effect. In this paper, simulation results and experimental results obtained with 2.0 Tesla MRI system are presented.

  • PDF

The Effect of Transverse Magnetic field on Macrosegregation in vertical Bridgman Crystal Growth of Te doped InSb

  • Lee, Geun-Hee;Lee, Zin-Hyoung
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.522-522
    • /
    • 1996
  • An investigation of the effects of transverse magnetic field and Peltier effect on melt convection and macrosegregation in vertical Bridgman crystal grosth of Te doped InSb was been carried out by means of microstructure observation, Hall measurement, electrical resistivity measurement and X-ray analysis. Before the experiments, Interface stability, convective instability and suppression of convection by magnetic field were calculated theoretically. After doping 1018, 1019 cm-3 Te in InSb, the temperature of Bridgman furnace was set up at $650^{\circ}C$. The samples were grown in I.D. 11mm, 100mm high quartz tube. The velocity of growth was about 2${\mu}{\textrm}{m}$/sec. In order to obtain the suppression of convection by magnetic field in the middle of growth, 2-4KG magnetic field was set on the melt. For searching of the shape of solid-liquid interface and the actual velocity of crystal growth, let 2A current flow from solid to liquid for 1second every 50seconds repeatedly (Peltier effect). The grown InSb was polycrystal, and each grain was very sharp. There was no much difference between the sample with and without magnetic field at a point of view of microstructure. For the sample with Peltier effect, the Peltier marks(striation) were observed regularly as expected. Through these marks, it was found that the solid-liquid interface was flat and the actual growth velocity was about 1-2${\mu}{\textrm}{m}$/sec. On the ground of theoretical calculation, there is thermosolutal convection in the Te doped InSb melt without magnetic field in this growth condition. and if there is more than 1KG magnetic field, the convection is suppressed. Through this experiments, the effective distribution coefficients, koff, were 0.35 in the case of no magnetic field, and 0.45 when the magnetic field is 2KG, 0.7 at 4KG. It was found that the more magnetic field was applied, the more convection was suppressed. But there was some difference between the theoretical calculation and the experiment, the cause of the difference was thought due to the use of some approximated values in theoretical calculation. In addition to these results, the sample with Peltier effect showed unexpected result about the Te distribution in InSb. It looked like no convection and no macrosegregation. It was thought that the unexpected behavior was due to Peltier mark. that is, when the strong current flew the growing sample, the mark was formed by catching Te. As a result of the phenomena, the more Te containing thin layer was made. The layer ruled the Hall measurement. The values of resistivity and mobility of these samples were just a little than those of other reference. It was thought that the reason of this result was that these samples were due to polycrystal, that is, grain boundaries had an influence on this result.

  • PDF

Analysis of the Magnetic Field and Eddy Current Characteristics in Isolated Phase Bus System (상분리 모선의 자계 및 와전류 특성 해석)

  • Kim, Jin-Su;Ha, Deok-Yong;Choe, Seung-Gil;Gang, Hyeong-Bu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.509-516
    • /
    • 2001
  • Isolated phase bus(IPS) has a special structure for carrying large current generated by a generator to a main transformer. In the analysis of IPB, the understanding of the magnetic field distribution generated by large current is important. Especially, while the bus conductor current is flowing, almost same amount of current as bus conductor current is induced in the enclosures under the influence of time varying magnetic field, and therefore the large electric loss and the deterioration of insulating capability might occur due to Joule heating effect. Hence for the optimal design of IPB satisfying the condition to minimize the loss, the accurate analysis of magnetic field distribution and the eddy current characteristics of three phase isolated phase bus have been investigated. In the analysis of time varying magnetic field, instead of finite difference method(FDM) which is generally used, finite element method with phasor concept is investigated under the assumption that the bus current is purely sinusoidal. The characteristics is studied along the phase angle by comparing the effect of eddy current on the magnetic field distribution with the case that eddy current is not considered, and also the effect of material, thickness and radius of enclosure on the eddy current distribution is discussed.

  • PDF

Morphology and Swelling Behaviors of PVA/Gelatin Blend Membranes Prepared Under High Electric Field (고전장하에서 제조된 PVA/Gelatin 블렌드막의 구조와 팽윤거동)

  • Huh, Yang-Il;Yun, Hyung-Ku
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.563-567
    • /
    • 2006
  • Poly(vinyl alcohol) (PVA) and gelatin (GEL) blend membranes were prepared by solution casting method under a high electric field. SEM observation of the membrane showed that gelatin rich domains were elongated and oriented to the direction of the applied electric field in PVA matrix. This can be attributed to the electrostatic emulsifying effects due to a reduction in interfacial tension. In addition, it was observed through WAXD and swelling measurements that the degree of crystallinity of membranes increased with applied electric field strength. This may be interpreted to be caused by the orientation effect of GEL domains in the blend membrane, and the self-annealing effect due to some heat generated from high electric field during casting.