• Title/Summary/Keyword: field-effect

Search Result 12,359, Processing Time 0.041 seconds

Thermo-Field emission in silicon nanomembrane ion detector for mass spectrometry (실리콘 나노 박막의 열-전계 방출효과를 이용한 분자 질량분석)

  • Park, Jong-Hoo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.586-591
    • /
    • 2013
  • This paper describes the characteristics of thermo-field emission in a freestanding silicon nanomembrane under ion bombardment with various thermal and field conditions. The thermal effect and field effect in thermo-field emission in silicon nanomembrane are investigated by varying kinetic energy of ions and electric field applied to the silicon nanomembrane surface, respectively. We found that thermo-field emission increases linearly as the electric field increases, when the electric field intensity is lower than the threshold. The thermo-field emission (schottky effect) increases proportionally to the power of temperature, which agree well with the predictions of a thermo-field emission model.

The Influence of Magnetic Field on Diffusion Flames: Role of Magnetic Field On/Off Frequency and Duty Ratio (자기장 분포가 확산화염의 연소특성에 미치는 영향: 자기장 On/Off 주기와 Duty Ratio의 역할)

  • Lee, Won-Nam;Bae, Seung-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.58-65
    • /
    • 2012
  • The influence of magnetic field on propane and acetylene diffusion flames have been experimentally investigated using an electromagnetic system. Periodically induced magnetic field having various frequencies and duty ratios was established in square wave form. The maximum intensity and gradient of magnetic field were 1.3 T and 0.27 T/mm, respectively. The width of a propane flame was reduced up to 4.5% and the brightness was enhanced up to 25% when the magnetic field was induced. The soot emission from an acetylene flame was ceased when magnetic field was induced. The alteration of flow field, which is due to the paramagnetic characteristics of oxygen molecule, is most likely to be responsible for the change in flame size and brightness. The effect of magnetic field on diffusion flames, which competes with the gravitational effect, was more apparent from a smaller size flame. The magnetic field effect, therefore, could be important under microgravity conditions. Since the time required to alter the flow field must be finite, the magnetic field effect is likely to be less significant for a periodically oscillating magnetic field at a high frequency or having a small duty ratio.

Analysis of Magnetic Field Application Effect on Fault Current Limiting Characteristics of a Flux-lock Type SFCL

  • Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.255-259
    • /
    • 2008
  • The magnetic field application effect on resistance of a high-$T_c$ superconducting (HTSC) element comprising a flux-lock type superconducting fault current limiter (SFCL) was investigated. The YBCO thin film, which was etched into a meander line using a lithography, was used as a current limiting element of the flux-lock type SFCL. To increase the magnetic field applied into HTSC element, the capacitor was connected in series with a solenoid-type magnetic field coil installed in the third winding of the flux-lock type SFCL. There was no magnetic field application effect on the resistance of HTSC element despite the application of larger magnetic field into the HTSC element when a fault happened. The resistance of HTSC element, on the contrary, started to decrease at the point of four periods from a fault instant although the amplitude of the applied magnetic field increased.

Investigation of Junction-less Tunneling Field Effect Transistor (JL-TFET) with Floating Gate

  • Ali, Asif;Seo, Dongsun;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.156-161
    • /
    • 2017
  • This work presents a novel structure for junction-less tunneling field effect transistor (JL-TFET) with a floating gate over the source region. Introduction of floating gate instead of fixed metal gate removes the limitation of fabrication process suitability. The proposed device is based on a heavily n-type-doped Si-channel junction-less field effect transistor (JLFET). A floating gate over source region and a control-gate with optimized metal work-function over channel region is used to make device work like a tunnel field effect transistor (TFET). The proposed device has exhibited excellent ID-VGS characteristics, ION/IOFF ratio, a point subthreshold slope (SS), and average SS for optimized device parameters. Electron charge stored in floating gate, isolation oxide layer and body doping concentration are optimized. The proposed JL-TFET can be a promising candidate for switching performances.

Degradation Characteristics of Mobility in Channel of P-MOSFET's by Hot Carriers (핫 캐리어에 의한 피-모스 트랜지스터의 채널에서 이동도의 열화 특성)

  • 이용재
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 1998
  • We have studied how the characteristics degradation between effective mobility and field effect mobility of gate channel in p-MOSFET's affects the gate channel length being follow by increased stress time and increased drain-source voltage stress. The experimental results between effective and field-effect mobility were analyzed that the measurement data are identical at the point of minimum slope in threshold voltage, the other part is different, that is, the effective mobility it the faster than the field-effect mobility. Also, It was found that the effective and field-effect mobility. Also, It was found that the effective and field-effect mobility of p-MOSFET's with short channel are increased by decreased channel length, increased stress time and increased drain-source voltage stress.

  • PDF

Magnetic Suspension Effect of BiPbSrCaCuO Superconducting Bulk (BiPbSrCaCuO 초전도 벌크의 Magnetic Suspension)

  • 이상헌
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.545-551
    • /
    • 2004
  • Magnetic suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing Ag$_2$O. Magnetic flux measurements of a toroidal magnet revealed a concave shaped field distribution with a null field along the axis of the torus at the point where the field reversed. The suspension effect was observed only for the Ag$_2$O doped and field cooled sample which is attributed to the enhanced flux pinning due to the field cooled condition. It has been cleared that Ag$_2$O acts as pinning center which plays an important role to the magnetic suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet has been investigated. It has been concluded that the magnetic suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.

Field-effect Ion-transport Devices with Carbon Nanotube Channels: Schematics and Simulations

  • Kwon Oh Kuen;Kwon Jun Sik;Hwang Ho Jung;Kang Jeong Won
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.787-791
    • /
    • 2004
  • We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that car be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, ther nal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.

  • PDF

The Study on CMA using field terminator (Field terminator를 이용한 CMA 제작에 관한 연구)

  • 이충만;성면창;권순남;정광호
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.278-283
    • /
    • 1996
  • We constructed a single path cylindrical mirror analyser(CMA) using field terminator methods. With computer simulation, the best fit voltage ratio and position of the field terminaor was determined with maintain log-scale equipotential line near both end of the CMA. Then we construct field terminator with voltage divider of metal-oxide resisters which reduces the fringe field effect. The resolving power of the CMA was better than $\Delta$E/E=0.4%.

  • PDF

Reinforcing Effect of Thin-wall at Serviceability Condition (상시하중상태에서 박벽의 보강효과에 대한 연구)

  • Kim, Doo-Hwan;Yoon, Seong-Soo;Park, Jin-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.11-17
    • /
    • 2010
  • For the reasonable analysis of design problems for agricultural facilities, considered the reinforcing effect of thin-wall. The most of agricultural structure is constructed small scale and have many purposes. Thus it has been designed temporary rather than permanent structure, and has relatively large slenderness ratio, small section and semi-rigid condition. Therefore many agricultural facilities are consist of relatively strong frame with weak wall at the viewpoint of stiffness and have not been reflected in the design. But the tension field influences to collapse of structure have already known. Therefore, we need quantification the effect of tension field at structural analysis. In this study, present the method of quantification the effect of tension field that came out thin-plate surrounded by high stiffness frame. The numerical results show that the effect of tension field effect for thin-wall is about 5% of the sectional area of frame in study agricultural facilities.

Effect of Stator Slotting in the Magnetic Field Distribution of Linear Brushless Permanent Magnet Motor

  • Chung, Myung-Jin;Lee, M.G;Lee, S.Q;Gweon, Dae-Gab
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.101-107
    • /
    • 2001
  • A model to describe the effect of stator slotting in the airgap region of a linear brushless permanent magnet motor (LBLPMM) is proposed for analytical prediction of magnetic field distribution. It is a two-dimensional model based on superposition of the effect of stator slotting and main field due to permanent magnet (PM) without stator slotting. The effect of stator slotting is expressed in form of a generalized equation, which is obtained by numerical analysis and is a function of motor geometric parameters, so the proposed model effectively accounts for the effect of stator slotting in the airgap field distribution according to change of motor geometry or relative motion of stator and armature. Results of prediction from the proposed model are compared with corresponding finite element analysis.

  • PDF