Browse > Article
http://dx.doi.org/10.12925/jkocs.2013.30.4.586

Thermo-Field emission in silicon nanomembrane ion detector for mass spectrometry  

Park, Jong-Hoo (Department of Electrical Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.30, no.4, 2013 , pp. 586-591 More about this Journal
Abstract
This paper describes the characteristics of thermo-field emission in a freestanding silicon nanomembrane under ion bombardment with various thermal and field conditions. The thermal effect and field effect in thermo-field emission in silicon nanomembrane are investigated by varying kinetic energy of ions and electric field applied to the silicon nanomembrane surface, respectively. We found that thermo-field emission increases linearly as the electric field increases, when the electric field intensity is lower than the threshold. The thermo-field emission (schottky effect) increases proportionally to the power of temperature, which agree well with the predictions of a thermo-field emission model.
Keywords
silicon nanomembrane; ion detector; thermo-field emission; mass spectrometry; schottky effect;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Westmacott, G.; Frank, M.; Labov, S. E. and Benner, W. H. Using a superconducting tunnel junction detector to measure the secondary electron emission efficiency for a microchannel plate detector bombarded by large molecular ions, Rapid Commun. Mass Spectrom., 14, 1854 (2000)   DOI   ScienceOn
2 Westmacott, G.; Ens, W. and Standing, K. G. Secondary ion and electron yield measurements for surfaces bombarded with large molecular ions, Nucl. Instrum. Methods Phys. Res., Sect. B, 108, 282 (1996)   DOI   ScienceOn
3 Beuhler, R. J. and Friedman, L. Threshold studies of secondary emission induced by macro-ion impact on solid surfaces, Nucl. Instrum. Methods, 170, 309 (1980)   DOI   ScienceOn
4 Meier, R. and Eberhardt, P. Velocity and ion species dependence of the gain of microchannel plates, Int. J. Mass Spectrom. Ion Processes, 123, 19 (1993)   DOI   ScienceOn
5 Hilton, G. C.; Martinis, J. M.; Wollman, D. A.; Irwin, K. D.; Dulcie, L. L.; Gerber, D.; Gillevet, P. M.; Twerenbold, D. Impact energy measurement in time-of-flight mass spectrometry with cryogenic microcalorimeters, Nature, 391, 672 (1998)   DOI   ScienceOn
6 Esposito, E.; Cristiano, R.; Pagano, S.; Perez de Lara, D.; Twerenbold, D. Fast Josephson cryodetector for time of flight mass spectrometry, Physica C, 372/376, 423 (2002)   DOI   ScienceOn
7 Park, J. Field emission from free-standing nanomembrane for high energy ion detection, JKMS, 21, 163 (2011)
8 Murphy, E. L.; Good, H. R. Thermionic emission, Field emission, and the transition region, Phys. Rev., 102, 1464 (1956)   DOI
9 Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry, Rapid commun. Mass Spectrom. 2, 151 (1988)   DOI
10 Wiley, W.C.; Mclaren, I.H. Rev. Sci.Instrum. 26, 1150 (1955)   DOI
11 Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons, Anal. Chem. 60, 2299 (1988)   DOI   ScienceOn
12 Fenn, J. B.; Mann, M; Meng, C. K.; and Wong, S. F. Electrospray ionization for mass spectrometry of large biomolecules, Science, 246, 64 (1989)   DOI
13 Geno, P. W. Ion Detection in MS, in Mass Spectrometry in the Biological Sciences: a Tutorial, Kluwer Academic Publ., Netherlands (1992)
14 Geno, P. W. and Macfarlane, R. D. Secondary electron emission induced by impact of low velocity molecular ions on a microchannel plate, Int. J. Mass Spectrom. Ion Processes, 92, 195 (1989)   DOI   ScienceOn
15 Twerenbold, D.; Gerber, D.; Gritti, D.; Gonin, Y.; Netuschill, A.; Rossel, F.; Schenker, D.; Vuilleumier, J. L. Single molecule detector for mass spectrometry with mass independent detection efficiency, Proteomics, 1, 66 (2001)   DOI