• Title/Summary/Keyword: field homogeneity

Search Result 196, Processing Time 0.026 seconds

A simulation study on the variation of virtual NMR signals by winding, bobbin, spacer error of HTS magnet

  • Kim, Junseong;Lee, Woo Seung;Kim, Jinsub;Song, Seunghyun;Nam, Seokho;Jeon, Haeryong;Baek, Geonwoo;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.3
    • /
    • pp.21-24
    • /
    • 2016
  • Recently, production technique and property of the High-Temperature Superconductor (HTS) tape have been improved. Thus, the study on applying an HTS magnet to the high magnetic field application is rapidly increased. A Nuclear Magnetic Resonance (NMR) spectrometer requires high magnitude and homogeneous of central magnetic field. However, the HTS magnet has fabrication errors because shape of HTS is tape and HTS magnet is manufactured by winding HTS tape to the bobbin. The fabrication errors are winding error, bobbin diameter error, spacer thickness error and so on. The winding error occurs when HTS tape is departed from the arranged position on the bobbin. The bobbin diameter and spacer thickness error occur since the diameter of bobbin and spacer are inaccurate. These errors lead magnitude and homogeneity of central magnetic field to be different from its ideal design. The purpose of this paper is to investigate the effect of winding error, bobbin diameter error and spacer thickness error on the central field and field homogeneity of HTS magnet using the virtual NMR signals in MATLAB simulation.

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.

The Conceptual Design of High-Tc superconducting Magnet for a Superconducting Property Measurement System (초전도 특성평가장치용 고온 초전도 마그네트의 개념 설계)

  • Choi, S.J.;Lee, S.Y.;Bae, J.H.;Sohn, M.H.;Kim, W.S.;Park, C.;Lee, J.K.;Lee, S.J.;Choi, K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.20-24
    • /
    • 2009
  • The superconducting property measurement system is used to acquire electrical and thermal properties on short HTS tape samples and the system is composed of specimen holder for mounting HTS tape and a magnet for applying magnetic fields externally. The magnet consists of two split racetrack windings and is designed to produce maximum 3T of center field. The temperature of specimen holder can be varied in range from 10K to 77K. The field homogeneity is required less than 300 gauss stray field contour within 20cm axially and 3cm radially from origin. We have worked on the conceptual designs of the conduction-cooled magnet for the superconducting characteristic measurement system. The measurement system will be fabricated in near future based on the design parameters presented in this paper.

Design and Comparison of Superconducting Magnets with Circular Coil Elements for Magnetic Resonance Imaging (원형무코일로 구성된 MRI용 초전도 자석의 설계와 비교)

  • Kim, Yong-Gwon;Hyun, Jung-Ho;Seo, Jeung-Hoon;Kim, Hyug-Gi;Oh, Chang-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.57-62
    • /
    • 2011
  • This paper proposed a method which is the three types of magnet model for improving field inhomogeneity of superconducting magnet. The length of coil wire was compared for the optimized current pattern using minimum power methods and field inhomogeneity under the specific simulation condition in case of same magnet field strength about each magnet type field inhomogeneity. Length of wire and field inhomogeneity were compared under the same condition(18 target points, 20cm DSV). According to the simulation results, the smaller target points can reduce the wire length but it can not improve the field inhomogeneity. Length of wire and low field inhomogeneity can not improve in same time. However, small DSV and reducing target points can overcome the these problem. And to conclude, if it processes shimming as reducing target points in case of magnet model which is open to space, about the size of same imaging region it needs a lot of current values(or the length of wire) and decreases field homogeneity but it is useful to get small ROI.

Low degree of homogeneity issue on the effective moduli of plain weave textile composites (기하학적 매개변수에 의한 평직복합재료의 저 균일도 문제)

  • 우경식;서영욱
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.8-21
    • /
    • 2000
  • In th is paper. the low degree of homogeneity issue in the effective modulus was studied for plain weave textile composites. Unit cell analyses were performed using multi-field macroelements. The effective moduli were calculated for finite and infinite configurations and the statistics assessment of the results was presented. Results indicated that the effective modulus of plain weave textile composites depended strongly on the fiber tow phase shift angles and the number of layers. As the number of layers increased, however, the distribution of the modulus showed concentration and higher degrees of homogeneity was attained.

  • PDF

A Ferromagnetic Shimming Method for NMR Magnet Using Linear Programming (리니어 프로그래밍을 이용한 NMR 마그넷의 수동 자장보정 방법)

  • Lee, Sang-Jin;Hahn, Seung-Yong;Sim, Ki-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1059-1063
    • /
    • 2010
  • Shimming is an important technique in development of nuclear magnetic resonance (NMR) magnets where image resolution is highly dependent on magnetic field homogeneity. Classically, shimming may be categorized into two types: 1) active shimming that incorporates with extra coils and precise tuning of their currents; and 2)passive shimming that incorporates with pieces of steel placed in a bore of a main magnet and their uniform magnetization under homogeneous external fields. Additional magnetic fields, produced by the coils and/or the steel sheets, compensate original magnetic field from the main magnet in such a way that the total field becomes more homogeneous. In this paper, we developed a passive shimming method based on linear programming optimization. Linear programming is well known to be highly efficient to find a global minimum in various linear problems. We firstly confirmed the linearity of magnetization of ferromagnetic pieces under a presence of external magnetic fields. Then, we adopted the linear programming to find optimized allocation of the steel pieces in the inner bore of a main magnet to improve field homogeneity.

The Optimal Design of Passive Shimming Elements for High Homogeneous Permanent Magnets Utilizing Sensitivity Analysis

  • Yao, Yingying;Choi, Yong-Kwon;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.461-465
    • /
    • 2006
  • This paper presents a useful and simple method to design the passive skimming system for homogeneous permanent magnets based on numerical optimization. To simulate the effects of manufacturing and assembling tolerances, the actual geometrical parameter of the magnet with a derivation is suggested. Then, the optimal design model oi a passive shim system is set up to correct the derivative of field homogeneity. The numbers, sizes and locations of the passive shims are optimized by the steepest descent algorithm combined with design sensitivity analysis. Two implementations show that the proposed method can achieve the required homogeneity of the field with the minimum quantity of ferromagnetics.

Time-Multiplexed RF Transmission to Improve $B_1$ Homogeneity in High Field MRI

  • Han, Byung-Hee;Seo, Jeung-Hun;Heo, Hye-Young;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • To improve $B_1$ homogeneity in high field MRI, the RF power is applied to the transmit array coil elements sequentially in the time-multiplexed way. Since only a single coil element is activated in a time-multiplexing slot, the global standing wave formation in the human body is greatly suppressed. The time-multiplexing slot width is on the order of micro seconds, hence, high-order-harmonic slices can be placed far from the transmit coil and simultaneous multiple slice selection can be avoided. The $B_1$ homogeneities of a birdcage coil and an eight-channel transmit array coil have been compared through finite difference time domain simulations. The simulation results indicate that the proposed technique can reduce the peak-to-peak $B_1$ inhomogeneity down to one fourth of the transmission with a birdcage coil on the central plane of the human head model at 3 T. The mimicking experiments at 3 T, eight separate experiments with a single coil element activated and image reconstruction by combining the eight images, also show promising results. It is expected that the proposed technique has some advantages over other $B_1$ improving methods in real practice since simple RF switching circuitries are only necessary and electromagnetic coupling between the coil elements is out of concern in its realization.