• Title/Summary/Keyword: field emission properties

Search Result 864, Processing Time 0.03 seconds

Improvement Study on Vertical Growth of Carbon Nanotubes and their Field Emission Properties at ICPCVD (유도결합형 플라즈마 화학기상증착법에서 탄소나노튜브의 수직성장과 전계방출 특성 향상 연구)

  • 김광식;류호진;장건익
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.713-719
    • /
    • 2002
  • In this study, the vertically well-aligned CNTs were synthesized by DC bias-assisted inductively coupled plasma hot-filament chemical vapor deposition (ICPHFCVD) using radio-frequence plasma of high density and that CNTs were vertically grown on Ni(300 )/Cr(200 )-deposited glass substrates at 58$0^{\circ}C$. This system(ICPHFCVD) added to tungsten filament in order to get thermal decompound and DC bias in order to vertically grow to general Inductively Coupled Plasma CVD. The grown CNTs by ICPHFCVD were developed to higher graphitization and fewer field emission properties than those by general ICPCVD. In this system, DC bias was effect of vortical alignment to growing CNTs. The measured turn-on fields of field emission property by general ICPCVD and DC bias-assisted ICPHFCVD were 5 V/${\mu}{\textrm}{m}$ and 3 V/${\mu}{\textrm}{m}$, respectively.

Surface structure modification of vertically-aligned carbon nanotubes and their characterization of field emission property

  • adil, Hawsawi;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.159-159
    • /
    • 2016
  • Vertically-aligned carbon nanotubes (VCNT) have attracted much attention due to their unique structural, mechanical and electronic properties, and possess many advantages for a wide range of multifunctional applications such as field emission displays, heat dissipation and potential energy conversion devices. Surface modification of the VCNT plays a fundamental role to meet specific demands for the applications and control their surface property. Recent studies have been focused on the improvement of the electron emission property and the structural modification of CNTs to enable the mass fabrication, since the VCNT considered as an ideal candidate for various field emission applications such as lamps and flat panel display devices, X-ray tubes, vacuum gauges, and microwave amplifiers. Here, we investigate the effect of surface morphology of the VCNT by water vapor exposure and coating materials on field emission property. VCNT with various height were prepared by thermal chemical vapor deposition: short-length around $200{\mu}m$, medium-length around $500{\mu}m$, and long-length around 1 mm. The surface morphology is modified by water vapor exposure by adjusting exposure time and temperature with ranges from 2 to 10 min and from 60 to 120oC, respectively. Thin films of SiO2 and W are coated on the structure-modified VCNT to confirm the effect of coated materials on field emission properties. As a result, the surface morphology of VCNT dramatically changes with increasing temperature and exposure time. Especially, the shorter VCNT change their surface morphology most rapidly. The difference of field emission property depending on the coating materials is discussed from the point of work function and field concentration factor based on Fowler-Nordheim tunneling.

  • PDF

Field emission properties of boron-doped diamond film (보론-도핑된 다이아몬드 박막의 전계방출 특성)

  • 강은아;최병구;노승정
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.110-115
    • /
    • 2000
  • Deposition conditions of diamond thin films were optimized using hot-filament chemical vapor deposition (HFCVD). Boron-doped diamond thin films with varying boron densities were then fabricated using B4C solid pellets. Current-voltage responses and field emission currents were measured to test the characteristics of field emission display (FED). With the increase of boron doping, the crystal size of diamond decreased slightly, but its quality was not changed significantly in case of small doping. The I-V characterization was performed for Al/diamond/p-Si, and the current of doped diamond film was increased $10^4\sim10^5$ times as compared with that of undoped film. In the field emission properties, the electrons were emitted with low electric field with the increase of doping, while the emission current increased. The onset-field of electron emission was 15.5 V/$\mu\textrm{m}$ for 2 pellets, 13.6 V/$\mu\textrm{m}$ for 3 pellets and 11.1 V/$\mu\textrm{m}$ for 4 pellets. With the incorporation of boron, the slope of Fowler-Nordheim graph was decreased, revealing that the electron emission behavior was improved with the decrease of the effective barrier energy.

  • PDF

Improving the Long-term Field Emission Stability of Carbon Nanotubes by Coating Co and Ni Oxide Layers

  • Choe, Ju-Seong;Lee, Han-Seong;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.18.1-18.1
    • /
    • 2011
  • Some applications of carbon nanotubes (CNTs) as field emitters, such as x-ray tubes and microwave amplifiers, require high current emission from a small emitter area. To emit the high current density, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects including high crystallinity, aspect ratio, distribution density, height uniformity, adhesion on a substrate, low outgassing rate during electron emission in vacuum, etc. In particular, adhesion of emitters on the substrate is one of the most important parameters to be secured for high current field emission from CNTs. So, we attempted a novel approach to improve the adhesion of CNT emitters by incorporating metal oxide layers between CNT emitters. In our previous study, CNT emitters were fabricated on a metal mesh by filtrating the aqueous suspensions containing both highly crystalline thin multiwalled CNTs and thick entangled multiwalled CNTs. However, the adhesion of CNT film was not enough to produce a high emission current for an extended period of time even after adopting the metal mesh as a fixing substrate of the CNT film. While a high current was emitted, some part of the film was shown to delaminate. In order to strengthen the CNT networks, cobalt-nickel oxides were incorporated into the film. After coating the oxide layer, the CNT tips seemed to be more strongly adhered on the CNT bush. Without the oxide layer, the field emission voltage-current curve moved fast to a high voltage side as increasing the number of voltage sweeps. With the cobalt-nickel oxide incorporated, however, the curve does not move after the second voltage sweep. Such improvement of emission properties seemed to be attributed to stronger adhesion of the CNT film which was imparted by the cobalt-nickel oxide layer between CNT networks. Observed after field emission for an extended period of time, the CNT film with the oxide layer showed less damage on the surface caused by high current emission.

  • PDF

Study of Surface Treatments on Field Emission Properties for Triode-Type Carbon Nanotube Cathodes (3극형 탄소나노튜브 캐소드의 전계방출 특성에 미치는 표면처리에 관한 연구)

  • Lee, Ji-Eon;An, Young-Je;Lee, Je-Hyun;Chung, Won-Sub;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.173-178
    • /
    • 2007
  • Carbon nanotube cathodes(CNT cathodes) with a trench structure similar to gated structure of triode-type cathode were fabricated by a screen printing method using multi-walled carbon nanotubes. The effects of surface treatments on CNT cathodes were investigated for high efficiency field emission displays(FEDs). A liquid method easily removed the organic residue and protruded the CNTs. Field emission properties were measured by using a diode-type mode. The liquid method produced a turn-on field of $1.4V/{\mu}m$. The emission current density was measured about $3.1mA/cm^{2}$ at the electric field of $3V/{\mu}m$. The liquid method showed a high potential applicable to the surface treatment for triode-type FEDs.

Optical Properties and Field Emission of ZnO Nanorods Grown on p-Type Porous Si

  • Park, Taehee;Park, Eunkyung;Ahn, Juwon;Lee, Jungwoo;Lee, Jongtaek;Lee, Sang-Hwa;Kim, Jae-Yong;Yi, Whikun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1779-1782
    • /
    • 2013
  • N-type ZnO nanorods were grown on p-type porous silicon using a chemical bath deposition (CBD) method (p-n diode). The structure and geometry of the device were examined by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) while the optoelectronic properties were investigated by UV/Vis absorption spectrometry as well as photoluminescence and electroluminescence measurements. The field emission (FE) properties of the device were also measured and its turn-on field and current at 6 $V/{\mu}m$ were determined. In principle, the growth of ZnO nanorods on porous siicon for optoelectronic applications is possible.

Formulation of Carbon Nanotube Paste and Its Optimization for Field Emission Display Applications

  • Kim, Yong-C.;Sohn, K.H.;Cho, Y.M.;Yoo, Eun-H.;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.696-699
    • /
    • 2004
  • Of the emissive display technologies, field emission displays using pasted carbon nanotubes offer several advantages over other competing cathode materials such as low driving voltage, possible large-area and low-cost processes. In this study, formulation of carbon nanotube paste and its electron field emission properties are characterized. Also the effects of additive powders and surface morphology on electron emission are reported.

  • PDF

Post-Treatment of Printed Carbon Nanotubes for Vertical Alignment

  • Kim, Yong-C.;Sohn, K.H.;Cho, Y.M.;Yoo, Eun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.692-695
    • /
    • 2004
  • Fabrication of photosensitive carbon nanotubes paste and its post-treatment has been developed for high resolution with good electron emission uniformity. We report novel post-treatment techniques including rubber-rolling and multiple field emission cycling from which we could improve the field emission properties of printed carbon nanotubes. These techniques would be easily applicable to large area field emission display using paste of carbon nanotubes

  • PDF

A Reliable Field Emission Performance of Double-Walled Carbon Nanotube Field Emitters (이중층 탄소나노튜브 전계전자 방출원의 신뢰성 있는 전계방출 특성)

  • Jung, S.I.;Lee, S.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.566-575
    • /
    • 2008
  • We investigated the field emission characteristics from the planar field emitters made of double-walled carbon nanotubes (DWCNTs) synthesized by a catalytic chemical vapor deposition (CCVD) method. Transmission electron microscopy, Thermogravimetric and Raman analysis showed that the carbon materials have a low defect level in their atomic carbon structure, pointing to the synthesis of high-purity DWCNTs. For field emission properties of DWCNTs, the turn-on field of DWCNTs was $1.9\;V/{\mu}m$ and the current density was about $74\;mA/cm^2$ at $8.1\;V/{\mu}m$, which is sufficient for the applications of field emission displays and vacuum microelectronic devices. The DWCNT field emitters also exhibited a uniform field emission pattern and good field emission stability in a diode configuration.

Adsorption of residual gases on carbon nanotubes and their field emission properties

  • Lee, Han-Sung;Jang, Eun-Soo;Goak, Jeung-Choon;Kim, Jin-Hee;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.51-51
    • /
    • 2008
  • Carbon nanotubes (CNTs) have long been reported as an ideal material due to their excellent electrical conductivity and chemical and mechanical stability as well as their high aspect ratios for field emission devices. CNT emitters made by screen printing the organic binder-based CNT paste may act as a source to release gases inside a vacuum panel. These residual gases may cause a catastrophic damage by electrical arcing or ion bombardment to the vacuum microelectronic devices and may change their physical or electrical properties by adsorbing on the CNT emitter surface. In this study, we analyzed the composition of residual gases inside the vacuum-sealed panel by residual gas analyzer (RGA), investigating the effects of individual gases of different kinds at several pressures on the field emission characteristics of CNT emitters. The residual gases included $H_2$, CO, $CO_2$, $N_2$, $CH_4$, $H_2O$, $C_2H_6$, and Ar. Effect of residual gases on the field emission was studied by observing the variation of the pulse voltages with the duty ratio of3.3% to keep the constant emission current of $28{\mu}A$. Each gas species was introduced to a vacuum chamber up to three different pressures ($5\times10^{-7}$, $5\times10^{-6}$, and $5\times10^{-5}$ torr) each for 1 h while electron emission was continued. The three different pressure regions were separated by keeping a high vacuum of $\sim10^{-8}$ torr for a 1 h. The emission was terminated 6 h after the third gas exposure was completed. Field emission characteristics under residual gases will be discussed in terms of their adsorption and desorption on the surface of CNTs and the resultant change of work function.

  • PDF