• 제목/요약/키워드: field cooling

검색결과 643건 처리시간 0.022초

변전소 구조물의 에너지파일 시스템 적용성 연구 (A Sutdy on the Apllicability of the Energy Pile System on Substation)

  • 이대수;오기대;이강렬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.198-198
    • /
    • 2011
  • Cooling and Heating system using Geothermal energy in the country has shown rapid development in the research and business field during about 10 years. However, like other renewable energy sources, high initial construction cost is acting as an obstacle to apply widely. Therefore Energy pile system(Heat Exchanger inserted inside the structure pile) that can save about 25 % initial construction cost has been studied in European countries and recently being studied in our country. Therefore, KPECO(Korea Electric Power Corporation) is also studying energy pile system to improve cooling & heating system in substation that install about 200 pile. KPECO is aimed to make energy pile design, construction and maintenance standards because substation has good applicability. In this study, we studied to make new grout material and design program to make optimized design & counstruction method of energy pile system. And planing to peform field test for energy pile system in a 154 kV substation to obtain long-term behavior and efficiency of the system.

  • PDF

CICC 형태의 초전도 버스 선에서 냉각 및 자기장에 의한 응력 해석 (Analysis of the stresses induced by magnetic field and cooling in the CICC type superconducting bus-line)

  • 이호진;남현일;김기백;홍계원
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제2권2호
    • /
    • pp.20-25
    • /
    • 2000
  • A CICC type superconducting bus-line electrically connecting a superconducting magnet to a power supply is cooled down to low temperature under the external magnetic field during operation. The thermal contraction during the cooling may be constrained by the supports which are installed to protect the bus-line from Lorenz magnetic forces. This constrained contraction causes thermal stresses in the bus-line to release thermal contraction. The minimum stress conditions in the bus-line may be optimized by controlling the supporting arrangement considering the thermal contraction and the external field. The analytical method to find optimal supports arrangement was suggested by using the beam theory, and numerical calculation using commercial code was performed to verify the suggested analytical optimization method.

  • PDF

재실밀도의 변화에 따른 건물에너지 사용량 분석을 위한 예비조사 (A Preliminary Study the Effect of Occupancy Densities on Building Energy Consumption)

  • 최종대;윤근영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.130-133
    • /
    • 2011
  • This paper reports the Survey results from a field monitoring study of office occupancy densities. The field measurement of a office in Yongin was carried out from 19 September to 30 September 2011. The survey has an aim to reveal the building energy consumption relationship between occupancy densities of a realistic office and the previous studies. The results showed that hourly occupied density of the previous studies is more higher than a field survey. we investigated the effects of difference occupancy densities on annual heating and cooling energy consumption using EnergyPlus. Heating and cooling consumption was raised because of the increased occupancy density. therefore, accurately measure the occupnacy schedule is important in order to reduce excessive building energy consumption, and is an significant element to be considered in the energy simulation.

  • PDF

초소형 압축기용 초고속 전동기 내부의 복합 열전달 해석 (A Numerical Study on the Conjugate Heat Transfer inside a High Speed Motor for a Small Radial Compressor)

  • 김태균;허남건;정시영;전승배
    • 한국유체기계학회 논문집
    • /
    • 제4권1호
    • /
    • pp.14-21
    • /
    • 2001
  • In a small centrifugal compressor system, a high-speed motor needs to be developed to drive impellers directly. Heat is generated by both electrical heating due to copper coil resistance and aerodynamic heating in the gap between the rotor and stator in a high-speed motor. Removal of the heat is essential to the design of such motors since most magnetic materials are brittle and can be easily fractured by the heat. In the present study the cooling flow fields and temperature distributions are analyzed by using computational fluid dynamics simulation for a high-speed motor which has air cooling system as well as water cooling system. In the analysis, a conjugate heat transfer problem is solved by considering both convective heat transfer in the cooling system and conduction heat transfer in solid parts. Based on design drawings of a motor, air cooling system and water cooling system are analyzed to obtain temperature field and thus to check the coiling system performance. Also the cooling performance are studied for various flow rates of cooling air and water at the inlets.

  • PDF

평면형 ECF 펌프를 이용한 전자기기 액체냉각 시스템 (Liquid Cooling System Using Planar ECF Pump for Electronic Devices)

  • 서우석;함영복;박중호;윤소남;양순용
    • 한국정밀공학회지
    • /
    • 제24권12호
    • /
    • pp.95-103
    • /
    • 2007
  • This paper presents a liquid cooling concept for heat rejection of high power electronic devices existing in notebook computers etc. The design, fabrication, and performance of the planar ECF pump and farced-liquid cooling system are summarized. The electro-conjugate fluid (ECF) is a kind of dielectric and functional fluids, which generates jet flows (ECF-jets) by applying static electric field through a pair of rod-like electrodes. The ECF-jet directly acts on the working fluid, so the proposed planar ECF pump needs no moving part, produces no vibration and noise. The planar ECF pump, consists of a pump housing and electrode substrate, achieves maximum flow rate and output pressure of $5.5\;cm^3/s$ and 7.2 kPa, respectively, at an applied voltage of 2.0 kV. The farced-liquid cooling system, constructed with the planar ECF pump, liquid-cooled heat sink and thermal test chip, removes input power up to 80 W keeping the chip surface temperature below $70\;^{\circ}C$. The experimental results demonstrate that the feasibility of forced-liquid cooling system using ECF is confirmed as an advanced cooling solution on the next-generation high power electronic devices.

초소형 압축기용 초고속 전동기 내부의 복합 열전달 해석 (A Numerical Study on the Conjugate Heat Transfer inside a High Speed Motor for a Small Radial Compressor)

  • 김태균;허남건;정시영;전승배
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.351-358
    • /
    • 2000
  • In a small centrifugal compressor system, a high-speed motor needs to be developed to drive impellers directly. Heat is generated by both electrical heating due to copper coil resistance and aerodynamic heating in the gap between the rotor and stator in a high-speed motor. Removal of the heat is essential to the design of such motors since most magnetic materials are brittle and can be easily fractured by the heat. In the present study the cooling flow fields and temperature distributions were analyzed by using computational fluid dynamics simulation for a high-speed motor which has air cooling system as well as water cooling system. In the analysis a conjugate heat transfer problem is solved by considering both convective heat transfer in the cooling system and conduction heat transfer in solid parts. Based on design drawings of a motor, air cooling system and water cooling system were analyzed to obtain temperature field and thus to check the coiling system performance. Also the cooling performance are studied for various flow rates of cooling air and water at the inlets.

  • PDF

건물냉방부하에 대한 동적 인버스 모델링기법의 EnergyPlus 건물모델 적용을 통한 성능평가 (Performance Evaluation of a Dynamic Inverse Model with EnergyPlus Model Simulation for Building Cooling Loads)

  • 이경호
    • 설비공학논문집
    • /
    • 제20권3호
    • /
    • pp.205-212
    • /
    • 2008
  • This paper describes the application of an inverse building model to a calibrated forward building model using EnergyPlus program. Typically, inverse models are trained using measured data. However, in this study, an inverse building model was trained using data generated by an EnergyPlus model for an actual office building. The EnergyPlus model was calibrated using field data for the building. A training data set for a month of July was generated from the EnergyPlus model to train the inverse model. Cooling load prediction of the trained inverse model was tested using another data set from the EnergyPlus model for a month of August. Predicted cooling loads showed good agreement with cooling loads from the EnergyPlus model with root-mean square errors of 4.11%. In addition, different control strategies with dynamic cooling setpoint variation were simulated using the inverse model. Peak cooling loads and daily cooling loads were compared for the dynamic simulation.

Modeling wind ribs effects for numerical simulation external pressure load on a cooling tower of KAZERUN power plant-IRAN

  • Goudarzi, Mohammad-Ali;Sabbagh-Yazdi, Saeed-Reza
    • Wind and Structures
    • /
    • 제11권6호
    • /
    • pp.479-496
    • /
    • 2008
  • In this paper, computer simulation of wind flow around a single cooling tower with louver support at the base in the KAZERUN power station in south part of IRAN is presented as a case study. ANSYS FLOTRAN, an unstructured finite element incompressible flow solver, is used for numerical investigation of wind induced pressure load on a single cooling tower. Since the effects of the wind ribs on external surface of the cooling tower shell which plays important role in formation of turbulent flow field, an innovative relation is introduced for modeling the effects of wind ribs on computation of wind pressure on cooling tower's shell. The introduced relation which follows the concept of equivalent sand roughness for the wall function is used in conjunction with two equations ${\kappa}-{\varepsilon}$ turbulent model. In this work, the effects of variation in the height/spacing ratio of external wind ribs are numerically investigated. Conclusions are made by comparison between computed pressure loads on external surface of cooling tower and the VGB (German guideline for cooling tower design) suggestions.

천장 카세트형 냉·난방기에 의해 형성되는 학교 교실의 실내 열환경 및 공기환경의 개선에 대한 연구 (A Study on the Improvement of Indoor Thermal and Air Environment Made by Ceiling Cassette Type Cooling and Heating Unit in Classrooms)

  • 장현재;이하영
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.141-148
    • /
    • 2012
  • Ceiling cassette type air conditioner has been a main stream as a heating/cooling system recently in school, Korea. In this study, indoor thermal environments made by ceiling cassette type air conditioner were investigated by CFD simulation. Concentrations of $CO_2$ were investigated by a field measurement. Indoor thermal environment with the velocity inlet angle of $45^{\circ}$ from the ceiling in heating season was very ununiform so that thermal area was divided into two parts those the one is window side which is cold, and the other is corridor side which is hot. In cooling season under the same condition, there are areas too hot or too cold. If the velocity inlet angle is set in $30^{\circ}$ from the ceiling, indoor thermal environments was improved greatly in cooling season and heating season, too. Also, from the field measurement of $CO_2$ concentrations, it was suggested to install ventilators with proper air volume considered the number of class students.

Turbulence Driven by Supernova Explosions in a Radiatively-Cooling Magnetized Interstellar Medium

  • KIM JONGSOO;BALSARA DINSHAW;MAC LOW MORDECAI-MARK
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.333-335
    • /
    • 2001
  • We study the properties of supernova (SN) driven interstellar turbulence with a numerical magnetohydrodynamic (MHD) model. Calculations were done using the RIEMANN framework for MHD, which is highly suited for astrophysical flows because it tracks shocks using a Riemann solver and ensures pressure positivity and a divergence-free magnetic field. We start our simulations with a uniform density threaded by a uniform magnetic field. A simplified radiative cooling curve and a constant heating rate are also included. In this radiatively-cooling magnetized medium, we explode SNe one at a time at randomly chosen positions with SN explosion rates equal to and 12 times higher than the Galactic value. The evolution of the system is basically determined by the input energy of SN explosions and the output energy of radiative cooling. We follow the simulations to the point where the total energy of the system, as well as thermal, kinetic, and magnetic energy individually, has reached a quasi-stationary value. From the numerical experiments, we find that: i) both thermal and dynamical processes are important in determining the phases of the interstellar medium, and ii) the power index n of the $B-p^n$ relation is consistent with observed values.

  • PDF