• Title/Summary/Keyword: field cooling

Search Result 647, Processing Time 0.032 seconds

An improved 1D-model for computing the thermal behaviour of concrete dams during operation. Comparison with other approaches

  • Santillan, D.;Saleteb, E.;Toledob, M.A.;Granados, A.
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.103-126
    • /
    • 2015
  • Thermal effects are significant loads for assessing concrete dam behaviour during operation. A new methodology to estimate thermal loads on concrete dams taking into account processes which were previously unconsidered, such as: the evaporative cooling, the night radiating cooling or the shades, has been recently reported. The application of this novel approach in combination with a three-dimensional finite element method to solve the heat diffusion equation led to a precise characterization of the thermal field inside the dam. However, that approach may be computationally expensive. This paper proposes the use of a new one-dimensional model based on an explicit finite difference scheme which is improved by means of the reported methodology for computing the heat fluxes through the dam faces. The improved model has been applied to a case study where observations from 21 concrete thermometers and data of climatic variables were available. The results are compared with those from: (a) the original one-dimensional finite difference model, (b) the Stucky-Derron classical one-dimensional analytical solution, and (c) a three-dimensional finite element method. The results of the improved model match well with the observed temperatures, in addition they are similar to those obtained with (c) except in the vicinity of the abutments, although this later is a considerably more complex methodology. The improved model have a better performance than the models (a) and (b), whose results present larger error and bias when compared with the recorded data.

A Case Study of Decreasing Environment Pollution Caused by Energy Consumption of a Dormitory Building Which Only Using Electricity by Efficiently Simulating Applying Residential SOFC (Solid Oxide Fuel Cell)

  • Chang, Han;Lee, In-Hee
    • Architectural research
    • /
    • v.21 no.1
    • /
    • pp.21-29
    • /
    • 2019
  • Recent years in Korea, some new developed buildings are only using electricity as power for heating, cooling, bathing and even cooking which means except electricity, there is no natural gas or other kinds of energy used in such kind of building. In vehicle industry area, scientists already invented electric vehicle as an environment friendly vehicle; after that, in architecture design and construction field, buildings only using electricity appeared; the curiosity of the environment impact of energy consumption by such kind of building lead me to do this research. In general, electricity is known as a clean energy resource reasoned by it is noncombustible energy resource; however, although there is no environmental pollution by using electricity, electricity generation procedure in power plant may cause huge amount of environment pollution; especially, electricity generation from combusting coal in power plant could emit enormous air pollutants to the air. In this research, the yearly amount of air pollution by energy using under traditional way in research target building that is using natural gas for heating, bathing and cooking and electricity for lighting, equipment and cooling is compared with yearly amount of air pollution by only using electricity as power in the building; result shows that building that only uses electricity emits much more air pollutants than uses electricity and natural gas together in the building. According to the amount of air pollutants comparison result between two different energy application types in the building, residential SOFC (Solid oxide fuel cell) is simulated to apply in this building for decreasing environment pollution of the building; furthermore, high load factor could lead high efficiency of SOFC, in the scenario of simulating applying SOFC in the building, SOFC is shared by two or three households in spring and autumn to increase efficiency of the SOFC. In sum, this research is trying to demonstrate electricity is a conditioned environment friendly energy resource; in the meanwhile, SOFC is simulated efficiently applying in the building only using electricity as power to decrease the large amount of air pollutants by energy using in the building. Energy consumption of the building is analyzed by calibrated commercial software Design Builder; the calibrated mathematical model of SOFC is referred from other researcher's study.

Effects of Wind Stress Curl, Topography, and Stratification on the Basin-scale Circulations in a Stratified Lake (바람의 회전응력, 지형, 그리고 성층화가 성층 호수의 물 순환에 미치는 영향)

  • Chung, Se-Woong;Schladow, S.G.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.53-53
    • /
    • 2015
  • Basin-scale motions in a stratified lake rely on interactions of spatially and temporally varying wind force, bathymetry, density variation, and earth's rotation. These motions provide a major driving force for vertical and horizontal mixing of inorganic and organic materials, dissolved oxygen, storm water and floating debris in stratified lakes. In Lake Tahoe, located between California and Nevada, USA, basin-scale circulations are obviously important because they are directly associated with the fate of the suspended particulate materials that degrade the clarity of the lake. A three-dimensional hydrodynamic model, ELCOM, was applied to Lake Tahoe to investigate the underlying mechanisms that determine the characteristics of basin-scale circulations. Numerical experiments were designed to examine the relative effects of various mechanisms responsible for the horizontal circulations for two different seasons, summer and winter. The unique double gyre, a cyclonic northern gyre and an anti-cyclonic southern gyre, occurred during the winter cooling season when wind stress curl, stratification, and Coriolis effect were all incorporated. The horizontal structure of the upwelling and downwelling formed due to basin-scale internal waves found to be closely related to the rotating direction of each gyre. In the summer, the spatially varying wind field and the Coriolis effect caused a dominant anti-cyclonic gyre to develop in the center of the lake. In the winter, a significant wind event excited internal waves, and a persistent (2 week long) cyclonic gyre formed near the upwelling zone. Mechanism of the persistent cyclonic gyre is explained as a geostrophic circulation ensued by balancing of the baroclinc pressure gradient (or baroclinic instability) and Coriolis effect. Topographic effect, examined by simulating a flat bathymetry with constant depth of 300m, was found to be significant during the winter cooling season but not as significant as the wind curl and baroclinic effects.

  • PDF

Performance Analysis of Liquid Pintle Thruster Using Quasi-one-dimensional Multi-phase Reaction Flow: Part I Key Sub-model Validation (준 일차원 다상 반응유동 기법을 이용한 케로신/과산화수소 액체 핀틀 추력기 성능해석 연구: Part I. 주요 구성 모델 검증)

  • Kang, Jeongseok;Bok, Janghan;Sung, Hong-Gye;Kwon, Minchan;Heo, JunYoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.69-77
    • /
    • 2020
  • A quasi one-dimensional multi-phase reaction flow analysis code is developed for the performance analysis of liquid pintle thrusters. Unsteady flow field, droplet evaporation, finite reaction and film cooling models are composed as the major models of the performance analysis. The droplet vaporization takes account of Abramzon's vaporization model, and the combustion employs a flamelet model based on detail chemical reactions. Shine's model is applied for the film cooling calculation. To verify each model, the Sod shock tube, single droplet vaporization, kerosene droplets combustion, and film length are evaluated.

Study on the Alternating Flow Hydraulics and Its New Potential Application in the Geotechnical Testing Field

  • Sang, Yong;Han, Ying;Duan, Fuhai
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.245-255
    • /
    • 2016
  • The alternating flow hydraulics (AFH) had demonstrated the unique features in the past. One of the most well-known inventions was the hydraulic machine-gun synchronizer, which had become the standard equipment of airplane during World War I. The studies on the AFH between 1960 and 1980 had trigged many researchers' interests and reached the summit. The disadvantages of the AFH like low efficiency and cooling difficulty had prevented the further development. Few people are engaged in studying the AFH at present. However, the unique characteristics of the AFH inspire the researchers to continuously explore the new special suitable applications. The overviews of the AFH and the new potential application in the geotechnical testing field have been discussed in this paper. First, the research results of the AFH in the past have been summarized. Then, the classifications of the AFH have been introduced in detail according to the working principle, the number of hydraulic transmission pipelines and the mode of input energy. The advantages and the disadvantages of the AFH have been discussed. A novel potential suitable application in the soil test field has been presented at last. The detailed designing ideas of a new dynamic trixial instrument have been given, which will be a more innovational and energy-saving plan according to the current studies. A series of simulation experiments have been done. The simulation results show that the proposed scheme for the new dynamic trixial instrument is feasible. The paper work will also give some inspirations in the reciprocating motion control system.

Internal Flow Analysis of Seawater Cooling Pump using CFD (CFD를 이용한 해수냉각펌프의 내부유동 분석)

  • Bao, Ngoc Tran;Yang, Chang-jo;Kim, Bu-gi;Kim, Jun-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.104-111
    • /
    • 2017
  • This research focuses on simulation and visualization of flow field characteristics inside a centrifugal pump. The 3D numerical analysis was carried out by using a numerical CFD tool, addressing a Reynolds Average Navier-Stock code with a standard k-${\varepsilon}$ two-equation turbulence model. The simulation accounts for friction head loss due to rough walls at suction, impeller, discharge areas and volumetric head loss at impeller wear ring. A comparison of performance curves between simulation and experimentation is included, and it reveals a same trend of those results with a small difference of maximum 5 %. At best efficiency point, velocity vectors are smooth but it changes significantly under off-design point, a strong recirculation appears at the outlet of impeller passages near tongue area. A relatively uniform preassure distribution was observed around the impeller in despite of the tongue. Within the volute, because of its geometry, spiral vortexes formed, proving that the flow field in this region was relatively turbulent and unsteady.

Conceptual Design of an HTS Motor for Future Electric Aircraft (차세대 전기 항공기를 위한 HTS 모터의 개념 설계)

  • Le, Dinh-Vuong;Nam, Gi-Dong;Lee, Seok-Ju;Park, Minwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.5
    • /
    • pp.49-57
    • /
    • 2020
  • Conventional electric motors are not suitable for aircraft because of their large size and weight. High-temperature superconducting (HTS) motors have high current density, high magnetic field density, and low loss, so they can significantly reduce the size and weight compared to general electric motors. This paper presents the conceptual design and analysis results of HTS motors for electric propulsion in future aircraft. A 2.5 MW HTS motor with a rotational speed of 7,200 RPM was designed and the specific power (kW/kg) was analyzed. The operating temperature of the field coil of the HTS motor is 20K in consideration of LH2 cooling. The stator winding were connected in a multi-phase configuration and Litz wires were used to minimize eddy current losses. As a result, it was confirmed that the specific power of the motor is about 18.67 kW/kg, which is much higher than that of the conventional electric motor.

Comparison of Enhancement Effect of Ninhydrin Fluorescent Fingerprints Using Zinc Chloride and Liquid Nitrogen and Introducing the New Cooling Method for Post Treatment of Ninhydrin (염화아연(Zinc Chloride)과 액화질소를 사용한 닌히드린(Ninhydrin) 형광지문의 증강 효과 비교 및 실무적 사용을 위한 새로운 냉각방법에 관한 연구)

  • Jeon, Su-Yeon;Kim, Chang-Yong;Kim, Mi-So;Yu, Je-Seol
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.75-82
    • /
    • 2020
  • We identify the enhancement effects of zinc chloride and liquid nitrogen on low quality ninhydrin-developed fingerprint and we wanted to find out another cooling methods available for ninhydrin/Zn fingerprint enhancement besides the liquid nitrogen, which is hard to access. Artificial sweat was used to make the same level of fingerprints, and fingerprints developed by each technique were evaluated by SWGFAST standard and compared the average score and standard deviation. As a result of the experiment, ninhydrin/Zn-liquid nitrogen got 3.2 and 3.3 as average scores that enough to identify an individual such as 1,2-IND/Zn or DFO. Also, experiments using dry ice instead of liquid nitrogen as a way of the ninhydrin/Zn-developed fingerprints enhancement resulted in 3.0 and 2.9 as average scores, therefore, it was confirmed that dry ice is also a sufficient cooling method to be considered in practice in the field of forensic science.

Reliability Analysis of EMU Static Inverters considering Influence of Temperature Stress Factor (온도스트레스 영향을 고려한 전동차 보조전원장치의 신뢰성분석)

  • Park, Nam-Chul;Song, Joong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.493-500
    • /
    • 2017
  • Based on the data accumulated through EMU fault management, this paper examines the reliability of old railway car parts and proposes measurements to improve safety. Subway Line 7 of the Seoul Metropolitan Rapid Transit Corporation, auxiliary power unit (Static Inverter) of the EMU second version is a core equipment to supply power to various room-service units in cars and make an effect directly on passenger satisfaction. To analyze the pattern of failure throughout the field data over a long period of time, this analysis of statistics and reliability considers the operating environment and stress factors. This statistical analysis presents the correlation between failure and the temperature stress factors related to frequent failure occurring intensively in summer. In addition, throughout the analysis of the life of the IGBT inverter, the effect of the temperature stress factor was observed before and after the repair. As a result of an analysis of the optimal operating conditions considering two variations of EMU, such as variable load and outside temperature, a difference in the cooling capacity between the optimal operating conditions and frequent failure conditions was observed. Based on this analysis, this paper suggests a way to minimize cooling capacity difference for the optimal operational conditions.

Correlation Between the Microclimate and the Crown of Platanus orientalis and Ulmus davidiana (버즘나무(Platanus orientalis)와 느릅나무(Ulmus davidiana)의 수관부와 미기후간의 상호 관계)

  • Lee, Jae-yoon;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.4
    • /
    • pp.793-799
    • /
    • 2016
  • This study examined Platanus orientalis and Ulmus davidiana planted in downtown parks to identify the correlations among microclimatic factors such as temperature in the crown, air flow, and wind speed. For the field survey, measurements were taken at 1 hour intervals from 09:00 am to 06:00 pm in August. For the measurement of microclimatic factors, data on temperature, light intensity, air flow, and wind speed were collected using a quantum sensor (PAR Quantum Sensor SKP215), a precision thermometer (Pt1000-Sensor), and a combination anemometer (1467 G4 & HG4). The results of the analysis demonstrated that both Platanus orientalis and Ulmus davidiana, showed a greater cooling effect inside the crown as compared with the outside temperature. The cooling effect inside the crown was more evident with air flow and wind speed factors. With relation to wind, the inner temperature of the crown of Platanus orientalis decreased due to air flow while that of Ulmus davidiana decreased due to wind speed. With no wind, the average variation in temperature inside the crown was $-0.9^{\circ}C$ for Ulmus davidiana and $-0.958^{\circ}C$ for Platanus orientalis, indicating that Platanus orientalis was relatively more effective in lowering the temperature of the planting space than Ulmus davidiana. This study is significant because it shows that different tree species have different effects on the microclimate and that factors affecting the formation of the microclimate of trees may vary with species. Further studies on species other than broad leaf trees, such as evergreen trees and shrubs, are required in order to plan the distribution of landscaping trees that are effective in regulating the microclimate within urban green spaces.