DOI QR코드

DOI QR Code

Correlation Between the Microclimate and the Crown of Platanus orientalis and Ulmus davidiana

버즘나무(Platanus orientalis)와 느릅나무(Ulmus davidiana)의 수관부와 미기후간의 상호 관계

  • Lee, Jae-yoon (Dept. of Horticulture and Landscape Architecture, Sangju Univ.) ;
  • Ki, Kyong-Seok (Dept. of Horticulture and Landscape Architecture, Sangju Univ.)
  • 이재윤 (상지대학교 친환경식물학부 원예조경학전공) ;
  • 기경석 (상지대학교 친환경식물학부 원예조경학전공)
  • Received : 2016.05.17
  • Accepted : 2016.08.23
  • Published : 2016.08.30

Abstract

This study examined Platanus orientalis and Ulmus davidiana planted in downtown parks to identify the correlations among microclimatic factors such as temperature in the crown, air flow, and wind speed. For the field survey, measurements were taken at 1 hour intervals from 09:00 am to 06:00 pm in August. For the measurement of microclimatic factors, data on temperature, light intensity, air flow, and wind speed were collected using a quantum sensor (PAR Quantum Sensor SKP215), a precision thermometer (Pt1000-Sensor), and a combination anemometer (1467 G4 & HG4). The results of the analysis demonstrated that both Platanus orientalis and Ulmus davidiana, showed a greater cooling effect inside the crown as compared with the outside temperature. The cooling effect inside the crown was more evident with air flow and wind speed factors. With relation to wind, the inner temperature of the crown of Platanus orientalis decreased due to air flow while that of Ulmus davidiana decreased due to wind speed. With no wind, the average variation in temperature inside the crown was $-0.9^{\circ}C$ for Ulmus davidiana and $-0.958^{\circ}C$ for Platanus orientalis, indicating that Platanus orientalis was relatively more effective in lowering the temperature of the planting space than Ulmus davidiana. This study is significant because it shows that different tree species have different effects on the microclimate and that factors affecting the formation of the microclimate of trees may vary with species. Further studies on species other than broad leaf trees, such as evergreen trees and shrubs, are required in order to plan the distribution of landscaping trees that are effective in regulating the microclimate within urban green spaces.

본 연구는 도심지 공원 내 식재된 버즘나무와 느릅나무를 대상으로 수관 내부의 온도, 풍량, 풍속 등 미기후 인자간의 상호관계를 규명하는데 그 목적이 있다. 현장조사는 여름철, 8월 한 달간 오전 09시부터 오후 06시까지 1시간 간격으로 측정하였다. 미기후 인자 측정 항목은 광량자센서(PAR Quantum Sensor SKP215), 정밀온도계측기(Pt1000-Sensor), 풍량풍속계(1467 G4 & HG4)를 이용하여 온도, 광량, 풍량 및 풍속 데이터를 수집하였다. 분석 결과, 버즘나무와 느릅나무는 두 종 모두 외부 온도에 비해 수관 내부에서 냉각효과가 있음이 입증되었다. 수관 내부의 냉각효과는 대기 중의 풍량과 풍속이 있을 때 더 효과적이었다. 바람이 있을 때, 버즘나무는 풍량에 의해 수관 내부의 온도가 더 낮아지며, 느릅나무는 풍속에 의해 수관 내부의 온도가 더 낮아지는 것으로 확인되었다. 바람이 없을 때, 두 종간 수관 내 평균온도 변화는 평균적으로 느릅나무가 $-0.9^{\circ}C$, 버즘나무가 $-0.958^{\circ}C$로 버즘나무가 느릅나무보다 식재 공간 내 온도를 낮추는데 비교적 더 효과적이었다. 본 연구는 도심 내 수목이 종별로 미기후에 미치는 영향에 차이가 있으며 또한, 수목의 미기후 형성에 영향을 미치는 인자들이 수종별로 다를 수 있음을 밝혔다는데서 의의가 있다. 향후 활엽교목 이외에 상록수, 관목류 등 다양한 수종 등에 대한 후속 연구가 필요하며, 이를 통해 도시 녹지 공간 내 미기후 조절에 효과적인 조경수를 보급하는데 기여할 것으로 사료된다.

Keywords

References

  1. Botkin, D.B. and C.E. Beveridge(1997) Cities as environments. Spriger US, 281pp.
  2. Brazel A., Selover, N., Vose, R. and H. Gordon(2000) The tale of two climates-Baltimore and Phoenix urban LTER sites. Clim Res 15: 123-135. https://doi.org/10.3354/cr015123
  3. Ditwald, G.(2005) Zur Validitaet von Bewertungsmethoden in der Landschaft- und Umweltplanung. Mensch & Buch Verlag, ISBN 3-89820-826-5.
  4. Ditwald, G.(2005) Sustainability and Adaptaion on Climate Change in German City Regions. Conference Proceedings of International Workshop on Sustainable City Region, Bali in Indonesia, pp. 9.
  5. Grllies, R.R. and T.N. Carlson(1995) Thermal remote sensing of surface soil water content with partial vegetation cover for incorporaion into climate models. Journal of Applied Meteorology 34: 745-756. https://doi.org/10.1175/1520-0450(1995)034<0745:TRSOSS>2.0.CO;2
  6. Hartmut, L.(1997) Landscaftsoekologie- Ansatz, Modelle, Methodik, Anwendung. UTB 521, ISBN 3-8252-0521-5.
  7. Kang, J.H. (2014) The Shading Effects of Double Row Street Trees on the Thermal Comfort Index. Univ of Gyeongnam National, 47pp. (in Korean with English abstract)
  8. Kwon, Y.A. and H.Y. Lee(2001) Spatial Distribution of Temperature in and around Urban Parks. The Korean Geographical Society 36(2): 126-140.
  9. Lambin, E.F., Baulies, X., Bockstael, N., Fischer, G., Krug, T., Leemans, R., Moran, E.F., Rindfuss, R.R., Sato, Y., Skole, D., Turber, B.L. and C. Vogel(1999) Land-use and land-cover change impelmentation strategy. Rep. 48, The Royal Swedish Academy of Sciences, pp. 75-85.
  10. Lauer, W.(1993) Klimatologie- Das Geographische Seminar. Braunschweig, 23pp.
  11. Lee, J. Y.(2012) Gruenflaechen und Wasserflaechen in Stadtgebieten-Ein landschaftsoekologischer Vergleich in Korea und Deutschland zur Aspekte der Gestaltung, Nutzung und des Managements. Ph. D. Dissertation, Uni. of Dortmund, 58pp.
  12. Oke, T.R.(1973) City size and the urban heat island. Atmospheric Environmet 7: 769-779. https://doi.org/10.1016/0004-6981(73)90140-6
  13. Oke, T.R.(1995) Bibliography of urban climate 1981-1988. WCAP-15. WMO/TD-No. 397.
  14. Miller, T.(1999) Urban Climatology and Air Quality. Heat Island, 35pp.
  15. Wei, H.L. and C.B, Fu(1998) Study of the sensitivity of a regional model in response to land cover change over northern China. Hydrol Process 12: 2249-2265. https://doi.org/10.1002/(SICI)1099-1085(19981030)12:13/14<2249::AID-HYP733>3.0.CO;2-Q
  16. Http://www.ghcc.mf.nasa.gov/urban/urban_heat_island.html