• Title/Summary/Keyword: fibroblast

Search Result 1,626, Processing Time 0.029 seconds

Effect of Kimchi Extracts to Reactive Oxygen species in Skin Cell Cytotoxicity (김치 추출물의 활성산소에 대한 피부세포 독성 완화효과)

  • 류승희;전영수;권명자;문정원;이영순;문갑순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.5
    • /
    • pp.814-821
    • /
    • 1997
  • Kimchi is composed of many ingredients such as Chinese cabbage, garlic, ginger, and red pepper and fermented fish extract. Some of them were known to have antioxidative activities due to their scavenging effect against reactive oxygen species(ROS). To study the health effects of kimchi on human skin cells, keratinocyte(A431, epidermoid carcinoma, human) and fibroblast(CCD-986SK, normal control, human) were cultured in oxidative stress condition provoked by paraquat, a superoxide anion generator, and hydrogen peroxide in the absence and presence of kimchi extract. The survival rate of keratinocyte was greatly reduced when exposed over 1mM concentration of hydrogen peroxide($H_{2}O_{2}$), but cytotoxicity of $H_{2}O_{2}$ was significantly reduced by kimchi extracts on cells. Especially 2 week-fermented kimchi decreased remarkably the cytotoxicity by $H_{2}O_{2}$ to keratinocyte cells. Over 1mM of paraquat concentration showed strong cell toxicity on keratinocyte, but the extracts from kimchi fermented for 1, 2 and 3 weeks showed protective effects in order. Fibroblast cells were significantly affected by $H_{2}O_{2}$ as were keratinocyte cells. Although almost all extacts of kimchi of different fermentation periods showed protective effect against cell killing at 0.5mM concentration of $H_{2}O_{2}$ week-fermented kimchi extract showed the strongest protective effect on fibroblast cells treated with 1mM $H_{2}O_{2}$ for either 1 day or 4 days. However most of kimchi extracts showed weak preventive effect or no effect on oxidative stress produced by paraquat. In conclusion, 2 week-fermented kimchi extract seems to have the best potential in preventing skin cells against oxidative damage which might be related to their scavenging effects of kimchi components produced during their fermentation process.

  • PDF

Upregulation of miR-760 and miR-186 Is Associated with Replicative Senescence in Human Lung Fibroblast Cells

  • Lee, Young-Hoon;Kim, Soo Young;Bae, Young-Seuk
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.620-627
    • /
    • 2014
  • We have previously shown that microRNAs (miRNAs) miR-760, miR-186, miR-337-3p, and miR-216b stimulate premature senescence through protein kinase CK2 (CK2) downregulation in human colon cancer cells. Here, we examined whether these four miRNAs are involved in the replicative senescence of human lung fibroblast IMR-90 cells. miR-760 and miR-186 were significantly upregulated in replicatively senescent IMR-90 cells, and their joint action with both miR-337-3p and miR-216b was necessary for efficient downregulation of the ${\alpha}$ subunit of CK2 ($CK2{\alpha}$) in IMR-90 cells. A mutation in any of the four miRNA-binding sequences within the $CK2{\alpha}3^{\prime}$-untranslated region (UTR) indicated that all four miRNAs should simultaneously bind to the target sites for $CK2{\alpha}$ downregulation. The four miRNAs increased senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) staining, p53 and $p21^{Cip1/WAF1}$ expression, and reactive oxygen species (ROS) production in proliferating IMR-90 cells. $CK2{\alpha}$ overexpression almost abolished this event. Taken together, the present results suggest that the upregulation of miR-760 and miR-186 is associated with replicative senescence in human lung fibroblast cells, and their cooperative action with miR-337-3p and miR-216b may induce replicative senescence through $CK2{\alpha}$ downregulation-dependent ROS generation.

A Comparative Study of Protein Profiles in Porcine Fetus Fibroblast Cells with Different Confluence States

  • Han, Rong-Xun;Kim, Hong-Rye;Diao, Yunfei;Kim, Myung-Youn;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.33 no.4
    • /
    • pp.243-248
    • /
    • 2009
  • To examine the differential expression of proteins during the cycling (70~80% confluences) and G0/G1 (full confluences) phases in porcine fetal fibroblast cells, we used a global proteomics approach by 2-D gel electrophoresis (2-DE) and MALDI-TOF-MS. Cycling cell were harvested at approximately 70% to 80% confluent state while cells in G0/G1 phase were recovered after maintenance of a confluent state for 48 hr. Cellular proteins with isoelectric points ranging between 3.0~10.0, were analyzed by 2-DE with 2 replicates of each sample. A total of approximately 700 spots were detected by 2.D gels stained with Coomassie brilliant blue. On comparing the cell samples obtained from the cycling and G0/G1 phases, a total of 13 spots were identified as differentially expressed proteins, of which 8 spots were up-regulated in the cycling cell and 5 were up-regulated in the G0/G1 phase. Differentially expressed proteins included K3 keratin, similar to serine protease 23 precursor, protein disulfide-isomerase A3, microsomal protease ER-60, alpha-actinin-2, and heat-shock protein 90 beta. The identified proteins were grouped on the basis of their basic functions such as molecular binding, catabolic, cell growth, and transcription regulatory proteins. Our results show expression profiles of key proteins in porcine fetal fibroblast cells during different cell cycle status.

EFFECTS OF LIPOPOLYSACCHARIDES, URSOLIC ACID AND OLEANOLIC ANCID ON PHENYTOIN-INDUCED CELL ACTIVITY IN HUMAN GINGIVAL FIBROBLAST (인체 치은섬유모세포에서 Lipopolysaccharides, Ursolic acid와 Oleanolic acid에 의한 Phenytoin 유도 세포활성에 미치는 영향)

  • Kwon, Oh-Dal;Kim, Yoon-Sung;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.1
    • /
    • pp.98-108
    • /
    • 1994
  • Gingival hyperplasia is frequently associated with the long-term use of phenytoin for control of convulsive disorder. The purpose of this study was to investigate on the effects of lipopolysaccharides (LPS), ursolic acid and oleanolic acid to phenytoin-induced cell activity in human gingival fibroblast. Human gingival fibroblasts were cultured form the healthy gingiva of orthodontic patients. Gingival fibroblasts were trypsinized and transferred to the weels of microtest plates. Fibroblast were cultured in growth medium added $5{\mu}g/ml$ of phenytoin, $5{\mu}g/ml$ of LPS, $10^{-7}M$ of ursolic acid and oleanolic acid. The passage number of cultured fibroblasts were fifth and eight. Cell morphology was examined by inverted microscope and the cell activity was measured by proliferation assay. Ursolic acid significantly modulated cell morphology into globular shape at the concentrantion of $10^{-7}M$ in the presence of phenytoin and LPS, and the cell activity was significantl decreased by ursolic acid or oleanolic acid regardless of the presence of phenytoin and LPS. These results suggested that the increased phenytoin-induced cell activity might be modulated by ursolic acid regardless of the presence of phenytoin and LPS. These results suggested that the increased phenytoin-induced cell activity might be modulated by ursolic acid or oleanolic acid. Further study is needed to clarify their toxicological effects on cellular modulation and mRNA expression change.

  • PDF

Association Study of Fibroblast Growth Factor 2 and Fibroblast Growth Factor Receptors Gene Polymorphism in Korean Ossification of the Posterior Longitudinal Ligament Patients

  • Jun, Jae-Kyun;Kim, Sung-Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.1
    • /
    • pp.7-13
    • /
    • 2012
  • Objective : The aim of this study was to determine whether single nucleotide polymorphisms (SNPs) of fibroblast growth factor (FGF) 2 gene and fibroblast growth factor receptor (FGFR) genes are associated with ossification of the posterior longitudinal ligament (OPLL). Methods : A total of 157 patients with OPLL and 222 controls were recruited for a case control association study investigating the relationship between SNPs of FGF2, FGFR1, FGFR2 and OPLL. To identify the association among polymorphisms of FGF2 gene, FGFR1, FGFR2 genes and OPLL, the authors genotyped 9 SNPs of the genes (FGF2 : rs1476217, rs308395, rs308397, and rs3747676; FGFR1 : rs13317 and rs2467531; FGFR2 : rs755793, rs1047100, and rs3135831) using direct sequencing method. SNPs data were analyzed using the SNPStats, SNPAnalyzer, Haploview, and Helixtree programs. Results : Of the SNPs, a SNP (rs13317) in FGFR1 was significantly associated with the susceptibility of OPLL in the codominant (odds ratio=1.35, 95% confidence interval=1.01-1.81, p=0.048) and recessive model (odds ratio=2.00, 95% confidence interval=1.11-3.59, p=0.020). The analysis adjusted for associated condition showed that the SNP of rs1476217 (p=0.03), rs3747676 (p=0.01) polymorphisms in the FGF2 were associated with diffuse idiopathic skeletal hyperostosis (DISH) and rs1476217 (p=0.01) in the FGF2 was associated with ossification of the ligament flavum (OLF). Conclusion : The results of the present study revealed that an FGFR1 SNP was significantly associated with OPLL and that a SNP in FGF2 was associated with conditions that were comorbid with OPLL (DISH and OLF).

Cytokines Regulate the Expression of the Thymus and Activation-Regulated Chemokine (TARC; CCL17) in Human Skin Fibroblast Cells

  • Lee, Ji-Sook;Kim, In-Sik;Kim, Dong-Hee;Yun, Chi-Young
    • Animal cells and systems
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2006
  • Allergic inflammation is thought to be a Th2 cell-dominant immune response during which tissue-resident fibroblasts produce chemokines which contribute to the recruitment of migratory leukocytes to sites of tissue injury. Thymus and activation-regulated chemokine (TARC; CCL17) is a potent member of the CC chemokine family and a selective chemoattractant for Th2 cells. In order to study the regulatory profiles of TARC production by $TNF-{\alpha}$, $IFN-{\gamma}$, and Il-4 in human normal skin fibroblast, CCD-986sk cell line was used. The expression of TARC protein was measured using ELISA, and mRNA level was detected by RT-PCR. The combination of $TNF-{\alpha}$ and IL-4 induced a time-and dose-dependent synergistic increase in the expression of TARC at both protein and mRNA levels in the cultured human skin fibroblasts. Exposure of the cells to single cytokine had no effect on TARC expression. The high concentration (100 ng/ml) and long incubation time (72 h) of $IFN-{\gamma}$ further enhanced the TARC production induced by $TNF-{\alpha}$/lL-4 in the skin fibroblast. This synergistic effect of Th1 and Th2 type cytokines on TARC production by skin fibroblasts may contribute to the inflammatory cell infiltration and tissue damage with allergic inflammation.

Enhancing Dermal Matrix Regeneration and Biomechanical Properties of $2^{nd}$ Degree-Burn Wounds by EGF-Impregnated Collagen Sponge Dressing

  • Cho Lee Ae-Ri
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1311-1316
    • /
    • 2005
  • To better define the relationship between dermal regeneration and wound contraction and scar formation, the effects of epidermal growth factor (EGF) loaded in collagen sponge matrix on the fibroblast cell proliferation rate and the dermal mechanical strength were investigated. Collagen sponges with acid-soluble fraction of pig skin were prepared and incorporated with EGF at 0, 4, and 8 $\mu$g/1.7 $cm^{2}$. Dermal fibroblasts were cultured to 80$\%$ confluence using DMEM, treated with the samples submerged, and the cell viability was estimated using MTT assay. A deep, $2^{nd}$ degree- burn of diameter 1 cm was prepared on the rabbit ear and the tested dressings were applied twice during the 15-day, post burn period. The processes of re-epithelialization and dermal regeneration were investigated until the complete wound closure day and histological analysis was performed with H-E staining. EGF increased the fibroblast cell proliferation rate. The histology showed well developed, weave-like collagen bundles and fibroblasts in EGF-treated wounds while open wounds showed irregular collagen bundles and impaired fibroblast growth. The breaking strength (944.1 $\pm$ 35.6 vs. 411.5 $\pm$ 57.0 Fmax, $gmm^{-2}$) and skin resilience (11.3 $\pm$ 1.4 vs. 6.5 $\pm$ 0.6 mJ/$mm^{2}$) were significantly increased with EGF­treated wounds as compared with open wounds, suggesting that EGF enhanced the dermal matrix formation and improved the wound mechanical strength. In conclusion, EGF-improved dermal matrix formation is related with a lower wound contraction rate. The impaired dermal regeneration observed in the open wounds could contribute to the formation of wound contraction and scar tissue development. An extraneous supply of EGF in the collagen dressing on deep, $2^{nd}$ degree-burns enhanced the dermal matrix formation.

Effect of Transplantation of Bone Marrow Stromal Cells and Dermal Fibroblasts on Collagen Synthesis (골수기질세포와 진피섬유모세포의 이식이 교원질 합성에 미치는 영향)

  • Choi, Won Il;Han, Seung-Kyu;Lee, Byung Il;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.34 no.2
    • /
    • pp.156-162
    • /
    • 2007
  • Purpose: In the previous in vitro studies the bone marrow stromal cells(BSCs) have shown the superior effect for wound healing activity than fibroblasts, which includes cell proliferation, type I collagen synthesis, and the production of bFGF, VEGF and TGF-${\beta}$ in chronic wound healing. The aim of this study is to compare the effects of BSCs and fibroblasts on wound healing activity in vivo, especially on collagen synthesis. Methods: The fibroblasts and BSCs were harvested from patients and cultured. The cultured cells were infiltrated into the pores of polyethylene discs. These discs were divided into three groups according to the mixed cells. In groups I, II and III the discs were loaded with no cells, fibroblasts and BSCs, respectively. Twelve discs per group(total 36 discs) were made for this study. After creating 6 pockets in the back of each rats, each discs was implanted into each pockets. At three time intervals from 1 to 3 weeks, the implanted discs were harvested for the histological and quantitative analysis. The amount of collagen produced was evaluated using ELISA. Statistical comparisons were made using the Mann-Whitney U-test. Results: There was great difference in the collagen synthesis among the three groups by the 1st and 2nd weeks. The BSC group showed highest collagen level, followed by fibroblast group and no cell group(p<0.05). The 3rd week specimens also showed greater collagen amount in BSC and fibroblast groups compared to those of no cell group(p<0.05). However, there was little difference between BSC and fibroblast groups. Conclusion: This result demonstrates that BSC has superior effect on stimulating wound healing than fibroblast, which is currently used for wound healing.

The Effect of Basic Fibroblast Growth Factor in Acellular Human Dermal Grafts in Rats (흰쥐에 시행한 무세포 인체 진피 이식에서의 Basic Fibroblast Growth Factor의 효과)

  • Lee, Hun-Joo;Kim, Yang-Woo;Cheon, Young-Woo
    • Archives of Plastic Surgery
    • /
    • v.38 no.5
    • /
    • pp.567-575
    • /
    • 2011
  • Purpose: Acellular human dermis is very useful implant for use in plastic and reconstructive surgery. However, the volume of acellular human dermis graft is known to decrease for a long time. Basic fibroblast growth factor (bFGF) is a polypeptide that enhances the collagen synthesis and angiogenesis. In the current study we examined whether bFGF could improve the survival of acellular human dermis ($SureDerm^{(R)}$) by increasing angiogenesis of the graft. Methods: Forty rats were divided into two groups (control and bFGF). A 2-mm thick piece of $SureDerm^{(R)}$ was cut into smaller pieces that were $15{\times}5$ mm in size. Two subcutaneous pockets were made on the back of each rat. Grafts sprayed with bFGF were implanted in the bFGF group and injected with bFGF after transplantation every 3 days for 2 weeks. In the control group, the grafts were treated with phosphate-buffered saline (PBS) instead of bFGF. Four days, and 1, 4, and 12 weeks after the implantation, the grafts were harvested and gross and histologic examinations were performed. Inflammation grade, graft thickness, neocollagen density, and neocapillary count were measured. Results: The bFGF group displayed more rapid accumulation of inflammatory cells with a higher density of neocapillaries, and increased active collagen synthesis. After 12 weeks, the thickness of the grafts in the control and bFGF groups was $75.15{\pm}4.80%$ and $81.79{\pm}5.72%$, respectively, in comparison to the thickness before transplantation. There was a statistically significant difference between both groups ($p$ <0.05). Conclusion: bFGF was effective in reducing the absorption of acellular human dermal grafts by increasing angiogenesis and accelerating engraftment. In conclusion, bFGF may be a good tool for use in acellular human dermal graft transplantation for reconstructive surgery involving soft-tissue defects.

The Effect of Trigonella foenum-graceum L. (Fenugreek) Towards Collagen Type I Alpha 1 (COL1A1) and Collagen Type III Alpha 1 (COL3A1) on Postmenopausal Woman's Fibroblast

  • Yusharyahya, Shannaz Nadia;Bramono, Kusmarinah;Sutanto, Natalia Rania;Kusuma, Indra
    • Natural Product Sciences
    • /
    • v.25 no.3
    • /
    • pp.208-214
    • /
    • 2019
  • Trigonella foenum-graceum L. (fenugreek) is a phytoestrogen, a nonsteroidal organic chemical compound from plants which has similar mechanism of action to sex hormone estradiol-$17{\beta}$. This study aims to assess the effectivity of fenugreek seeds extract on collagen type I alpha 1 (COL1A1) and collagen type III alpha 1 (COL3A1) which are both decreased in aging skin and become worsen after menopause. This in vitro experimental study used old human dermal fibroblast from leftover tissue of blepharoplasty on a postmenopausal woman (old HDF). As a control of the fenugreek's ability to trigger collagen production, we used fibroblast from preputium (young HDF). Subsequent to fibroblast isolation and culture, toxicity test was conducted on both old and young HDF by measuring cell viability on fenugreek extract with the concentration of 5 mg/mL to $1.2{\mu}g/mL$ which will be tested on both HDF to examine COL1A1 and COL3A1 using ELISA, compared to no treatment and 5 nM estradiol. Old HDF showed a 4 times slower proliferation compared to young HDF (p<0.05). Toxicity test revealed fenugreek concentration of $0.5-2{\mu}g/mL$ was non-toxic to both old and young HDF. The most significant fenugreek concentration to increase COL1A1 and COL3A1 secretion was $2{\mu}g/mL$ (p<0.05).