• Title/Summary/Keyword: fiber-reinforced composite

Search Result 1,872, Processing Time 0.024 seconds

Sliding Wear and Friction Properties of Composite Materials for Friction Bushing (Friction Bushing용 복합재료의 미끄럼 마찰마모특성에 관한 연구)

  • Lee Han-Young;Heo Dae-Hong;Kim Tae-Jun;Cho Yong-Jae;Cho Bum-Rae;Hur Man-Dae
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The sliding friction and wear properties of mineral fiber reinforced composite(MF) and glass fiber reinforced composites(GF) are investigated to clarify their field of use and the role of each fiber in friction material. Friction and wear test reveals that GF composite has better wear resistance even though with low friction coefficient, comparing with MF composite. Glass fiber strengthen effectively the matrix and may absorb friction energy to convert it into the fracture energy of them, as well as its lubricative role. However, mineral fiber in MF composite is too small to strengthen the matrix. Then MF composite are easily plowed and worn out by asperity on counter material. Friction coefficient of MF composite is higher friction coefficient than that of GF composite and varied widely with test.

EFFECT OF FIBER DIRECTION ON THE POLYMERIZATION SHRINKAGE OF FIBER-REINFORCED COMPOSITES (섬유 보강 복합레진의 섬유 방향이 중합수축에 미치는 영향)

  • Yom, Joong-Won;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.364-370
    • /
    • 2009
  • The aim of this study was to evaluate the effect of fiber direction on the polymerization shrinkage of fiber-reinforced composite. The disc-shaped flowable composite specimens (d = 10 mm, h = 2 mm, Aeliteflo A2, Bisco, Inc., IL, USA) with or without glass fiber bundle (X-80821P Glass Fiber, Bisco, Inc., IL, USA) inside were prepared, and the longitudinal and transversal polymerization shrinkage of the specimens on radial plane were measured with strain gages (Linear S-series 350${\Omega}$, CAS, Seoul, Korea). In order to measure the free polymerization shrinkage of the flowable composite itself, the disc-shaped specimens (d = 7 mm, h = 1 mm) without fiber were prepared, and the axial shrinkage was measured with an LVDT (linear variable differential transformer) displacement sensor. The cross-section of the polymerized specimens was observed with a scanning electron microscope to examine the arrangement of the fiber bundle in composite. The mean polymerization shrinkage value of each specimen group was analyzed with ANOVA and Scheffe post-hoc test (${\alpha}$=0.05). The radial polymerization shrinkage of fiber-reinforced composite was decreased in the longitudinal direction of fiber, but increased in the transversal direction of fiber (p<0.05). We can conclude that the polymerization shrinkage of fiber-reinforced composite splint or restoratives is dependent on the direction of fiber.

A Study of Non-contacting Ultrasonic Technique for Evaluation of Fiber Reinforced Composite Materials (섬유강화 복합재료의 비접촉식 초음파 평가 기법 연구)

  • Choi Sang-Woo;Seo Kyeong-Cheol;Lee Joon-Hyun;Byun Joon-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.268-271
    • /
    • 2004
  • Non-contact technique should be developed for receiving ultrasonic wave for on-line monitoring of processing defects of fiber reinforced composites, since couplant must be applied on composite materials when conventional ultrasonic testing technique was used. Restriction of conventional ultrasonic testing technique was proven by transmitting and receiving ultrasonic wave on CFRP in various direction of wave propagation with various incident angle of ultrasonic beam. Air-coupled transducer and laser interferometer were applied for non-contacting reception of ultrasonic wave in fiber reinforced composite materials. Air-coupled transducer has optimal sensitivity and frequency band of 300kHz has homogeneous characteristics on direction of wave propagation.

  • PDF

Effect of Manufacturing Factors on Mechanical Properties of the Rice-husk Powder Composites (왕겨분말 복합재료의 기계적 특성에 미치는 제조인자의 영향)

  • Choi J.Y.;Wang Renliang;Yoon H.C.;Lim J.K.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.794-799
    • /
    • 2006
  • In recent years, the use of natural fiber as reinforcement in polymer composites to replace synthetic fiber such as glass fiber is receiving increasing attention. Because of increasing usage according to the high demand, the cost of thermoplastic has increased rapidly over the past decades. We used a thermoplastic polymer(polypropylene) as the matrix and a lignocellulosic material(rice-husk flour) as the reinforcement filler to prepare a particle-reinforced composite to examine the possibility of using lignocellulosic material as reinforcement filler and to determine data of test results for physical, mechanical and morphological properties of the composite according to the reinforcement filler content in respect to thermoplastic polymer, In this study, PLA/PP rice-husk fiber-reinforced thermoplastic composites that made by the hot press molding method according to appropriate manufacturing process was evaluated as mechanical properties.

Strain Properties on Rear Side of Fiber Reinforced Concrete and Cement Composite by Impact Load (충격하중을 받는 섬유보강 콘크리트 및 시멘트 복합체의 배면변형특성)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Lee, Bo-Kyeong;Yoon, Min-Ho;Son, Min-Jae;Kim, Gyeong-Tae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.158-159
    • /
    • 2017
  • In this study, it evaluate the strain properties of fiber reinforced concrete and fiber reinforced cement composite. The types of fiber are Hooked steel fiber and it was mixed 0.5, 1.0 vol.% in concrete and 1.0, 2.0 vol.% in cement composites. The impact test was conducted by using a projectile (diameter: 25mm, velocity: 170m/s) and strain properties on the rear side of each specimen was evaluated by strain gage. After the impact test, fracture grade, fracture depth was evaluated.

  • PDF

Effects of Type of Synthetic Fiber on Material Properties of Cementless Composite (합성섬유 종류가 무시멘트 복합재료의 재료 거동에 미치는 영향)

  • Choi, Jeong-Il;Park, Se-Eon;Cha, Sang Lyul;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.255-261
    • /
    • 2019
  • The purpose of this study is to investigate effects of types of synthetic fibers on mechanical properties of alkali-activated slag composite. Materials and mixture proportion for matrix are determined, and the compressive strength, tensile performance, and cracking patterns of three composites reinforced by polypropylene, polyvinyl-alcohol, and polyethylene fibers. From the test results, it was observed that polyvinyl-alcohol fiber-reinforced composite and polyethylene fiber-reinforced composite had similar tensile performance. On the other hand, polypropylene fiber-reinforced composite showed low tensile performance. And it was exhibited that other factors except tensile strength and aspect ratio of fiber influence significantly tensile behavior of composite.

Failure Mechanism of Metal Matrix Composites Subject to Transverse Loading (횡방향 하중을 받는 금속모재 복합재료의 파손구조)

  • Ham, Jong-Ho;Lee, Hyeong-Il;Jo, Jong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1456-1469
    • /
    • 2000
  • Mechanical behaviors of uniaxially fiber-reinforced metal matrix composites under transverse loading conditions were studied at room and elevated temperatures. A mono-filament composite was selecte d as a representative analysis model with perfectly bonded fiber/matrix interface assumption. The elastic-plastic and visco-plastic models were investigated by both theoretical and numerical methods. The product of triaxiality factor and effective strain as well as stress components and strain energy was obtained as a function of location to estimate the failure sites in fiber-reinforced metal matrix composite. Results showed that fiber/ matrix interfacial debond plays a key role for local failure at the room temperature, while void creation and growth in addition to the interfacial debond are major concerns at the elevated temperature. It was also shown that there would be an optimal diameter of fiber for the strong fiber-reinforced metal matrix composite.

Use and advantage of Red algae fiber as reinforcement of Biocomposite (홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.93-102
    • /
    • 2007
  • Biocomposite was organized with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, non-wood fibers have been used as reinforcements of biocomposite which are all plant-based fibers. The present study focused on investigating the fabrication and characterization of biocomposite reinforced with red algae fiber. The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS matrix are markedly improved with reinforcing the BRAF. These results support that the red algae fiber can be used as an excellent reinforcement of biocomposites as "green-composite" or "eco-composite".

  • PDF