DOI QR코드

DOI QR Code

Effects of Type of Synthetic Fiber on Material Properties of Cementless Composite

합성섬유 종류가 무시멘트 복합재료의 재료 거동에 미치는 영향

  • Choi, Jeong-Il (School of Architecture, Chonnam National University) ;
  • Park, Se-Eon (School of Architecture, Chonnam National University) ;
  • Cha, Sang Lyul (Department of Civil and Environmental Engineering, KAIST) ;
  • Lee, Bang Yeon (School of Architecture, Chonnam National University)
  • 최정일 (전남대학교 바이오하우징연구소) ;
  • 박세언 (전남대학교 건축학부) ;
  • 차상률 (한국과학기술원 건설및환경공학과) ;
  • 이방연 (전남대학교 건축학부)
  • Received : 2019.08.23
  • Accepted : 2019.09.18
  • Published : 2019.09.30

Abstract

The purpose of this study is to investigate effects of types of synthetic fibers on mechanical properties of alkali-activated slag composite. Materials and mixture proportion for matrix are determined, and the compressive strength, tensile performance, and cracking patterns of three composites reinforced by polypropylene, polyvinyl-alcohol, and polyethylene fibers. From the test results, it was observed that polyvinyl-alcohol fiber-reinforced composite and polyethylene fiber-reinforced composite had similar tensile performance. On the other hand, polypropylene fiber-reinforced composite showed low tensile performance. And it was exhibited that other factors except tensile strength and aspect ratio of fiber influence significantly tensile behavior of composite.

이 연구의 목적은 보강섬유로 합성섬유의 종류가 알칼리활성 슬래그 복합재료의 역학성능에 미치는 영향을 조사하는 것이다. 이를 위하여 매트릭스 재료 및 배합을 결정하였고, 폴리프로필렌, 폴리비닐알코올, 폴리에틸렌 섬유로 보강된 복합재료의 압축강도, 인장성능 및 균열패턴을 평가하였다. 실험결과 폴리비닐알코올 섬유와 폴리에틸렌 섬유로 보강한 복합재료는 유사한 인장성능을 나타낸 반면 폴리프로필렌 섬유로 보강한 복합재료는 낮은 인장성능을 나타내었다. 또한 동일한 매트릭스이더라도 섬유의 종류에 따라 인장거동에 큰 차이가 발생하는 것을 확인하였으며, 섬유의 강도나 형상비 이외의 요인들도 인장거동에 큰 영향을 미치는 것을 확인하였다.

Keywords

References

  1. Bischoff, P.H., Perry, S. (1991). Compressive behaviour of concrete at high strain rates, Materials and Structures, 24(6), 425-450. https://doi.org/10.1007/BF02472016
  2. Choi, J.I., Park, S.E., Lee, B.Y., Kim, Y.Y. (2018). Tensile properties of polyethylene fiber-reinforced highly ductile composite with compressive strength of 100MPa class, Journal of the Korea Concrete Institute, 30(5), 497-503. https://doi.org/10.4334/JKCI.2018.30.5.497
  3. Choi, J.I., Song, K.I., Song, J.K., Lee, B.Y. (2016a). Composite properties of high-strength polyethylene fiber-reinforced cement and cementless composites, Composite Structures, 138, 116-121. https://doi.org/10.1016/j.compstruct.2015.11.046
  4. Choi, J.I., Lee, B.Y., Ranade, R., Li, V.C., Lee, Y. (2016b). Ultra-high-ductile behavior of a polyethylene fiber-reinforced alkali-activated slag-based composite, Cement and Concrete Composites, 70, 153-158. https://doi.org/10.1016/j.cemconcomp.2016.04.002
  5. Choi, S.J., Choi, J.I., Song, J.K., Lee, B.Y. (2015). Rheological and mechanical properties of fiber-reinforced alkali-activated composite, Construction and Building Materials, 96, 112-118. https://doi.org/10.1016/j.conbuildmat.2015.07.182
  6. Damtoft, J., Lukasik, J., Herfort, D., Sorrentino, D., Gartner, E. (2008). Sustainable development and climate change initiatives, Cement and Concrete Research, 38(2), 115-127. https://doi.org/10.1016/j.cemconres.2007.09.008
  7. Hentz, S., DonzC, F.V., Daudeville, L. (2004). Discrete element modelling of concrete submitted to dynamic loading at high strain rates, Computers & structures, 82(29-30), 2509-2524. https://doi.org/10.1016/j.compstruc.2004.05.016
  8. Jeong, G.Y., Jang, S.J., Kim, Y.C., Yun, H.D. (2018). Effects of steel fiber strength and aspect ratio on mechanical properties of high-strength concrete, Journal of the Korea Concrete Institute, 30(2), 197-205. https://doi.org/10.4334/JKCI.2018.30.2.197
  9. JSCE. (2008). Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC), Japan: Japan Society of Civil Engineers.
  10. Kang, C., Huh, J., Kwak, K., Lee, B.Y. (2018). Assessment of self-healing performance of fly ash concrete incorporating PE fiber and PVA fiber using flexural test, Journal of the Korea Concrete Institute, 30(2), 157-166. https://doi.org/10.4334/JKCI.2018.30.2.157
  11. Kwon, S.J., Kang, S.T., Choi, J.I., Lee, B.Y. (2016). Compressive and tensile behavior of polyetylene fiber reinforced composite according to silica sand and fly ash, Journal of the Korean Recycled Construction Resources Institute, 4(1), 25-30. https://doi.org/10.14190/JRCR.2016.4.1.025
  12. Lee, B.Y., Cho, C.G., Lim, H.J., Song, J.K., Yang, K.H., Li, V.C. (2012). Strain hardening fiber reinforced alkali-activated mortar - a feasibility study, Construction and Building Materials, 37, 15-20. https://doi.org/10.1016/j.conbuildmat.2012.06.007
  13. Lee, Y., Choi, J.I., Kim, H.K., Lee, B.Y. (2017). Effects of a defoamer on the compressive strength and tensile behavior of alkali-activated slag-based cementless composite reinforced by polyethylene fiber, Composite Structures, 172, 166-172. https://doi.org/10.1016/j.compstruct.2017.03.095
  14. Malhotra, V. (2002). Introduction: sustainable development and concrete technology, Concrete International, 24(7), 22.