• Title/Summary/Keyword: fiber surface treatment

Search Result 487, Processing Time 0.025 seconds

A Study of Atmospheric Plasma Treatment on Surface Energetics of Carbon Fibers

  • Park, Soo-Jin;Chang, Yong-Hwan;Moon, Cheol-Whan;Suh, Dong-Hack;Im, Seung-Soon;Kim, Yeong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.335-338
    • /
    • 2010
  • In this study, the atmospheric plasma treatment with $He/O_2$ was conducted to modify the surface chemistry of carbon fibers. The effects of plasma treatment parameters on the surface energetics of carbon fibers were experimentally investigated with respect to gas flow ratio, power intensity, and treatment time. Surface characteristics of the carbon fibers were determined by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), Fourier transform infrared (FT-IR), Zeta-potential, and contact angle measurements. The results indicated that oxygen plasma treatment led to a large amount of reactive functional groups onto the fiber surface, and these groups can form together as physical intermolecular bonding to improve the surface wettability with a hydrophilic polymer matrix.

Electrodeposition onto the Surface of Carbon Fiber and Its Application to Composites (II) - CFRC with MVEMA and EMA Interphase - (탄소섬유 표면에의 고분자 전착과 복합재료 물성 (II) - MVEMA 및 EMA 계면상을 갖는 탄소섬유 복합재료 -)

  • Kim, Minyoung;Kim, Jihong;Bae, Jongwoo;Kim, Wonho;Hwang, Byungsun;Choi, Youngsun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.336-342
    • /
    • 1999
  • Various surface treatment techniques can be applied onto the surface of carbon fibers to increase interlaminar shear strength (ILSS). In a commerciaI treatment, first, surface of carbon fiber was oxidized, after that, a sizing agent was coated to improve handleability and adhesion to the matrix. Carbon fiber reinforced composites (CFRC) which is made of these fibers show excellent ILSS but show low vaIues of impact strength In this study, reactive and ductile interphase was introduced between fiber and matrix to increase both the ILSS and impact strength. By using electric conductivity of carbon fibers, flexible polymers which have ionizable group, i.e., MVEMA and EMA, were coated onto the surface (oxidized) of carbon fiber by the technique of electrodeposition. ILSS and impact strength of composites were evaluated according to the surface treatments, i.e., commercial sizing treatment, interphase introduction, and without sizing treatment. Izod impact strength and ILSS of CFRC were simultaneously improved in thc thickness range of $0.08{\sim}0.12{\mu}m$ of MVEMA interphase. Water resistance of the composites was decreased by introducing MVEMA interphase.

  • PDF

A Study on Fibrillation of Tencel Material(Part I) -Based on Change of Properties of Tencel by Cellulase- (텐셀소재의 fibrillation에 관한 연구(제I보) -셀룰라제로 처리한 텐셀의 물성변화를 중심으로-)

  • 정영희;송경헌;양진숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.3
    • /
    • pp.507-515
    • /
    • 2001
  • Tencel is a high quality cellulosic fiber, which is controlled and processed by an environmentally sound route. But, the point about tencel and the reason why it achieves its unique touch in its finished state is that it is a fibrillating fiber. That means it can take a great deal of punishment during the finishing process, which raise the fiber to produce the characteristics handle, without destroying the cloth. The aim of cellulase treatment is to improve appearence of tencel, plus the fiber ends protruding from the fabric surface. But enzymatic hydrolysis can weakens the fiber ends and changes the properties of fabrics. This study examined about the changes of properties according to several conditions and effect of cellulase to fibril of tencel. The results are as follows. The weight loss was occurred, tensile strength was decreased, softness was increased. And cellulase treatment reduced amount of fibril.

  • PDF

Preparation, characterization of activated carbon fiber from luffa and its application in CVFCW for rainwater treatment

  • Ahmed, Sanjrani Manzoor;Zhou, Boxun;Zhao, Heng;Zheng, You Ping;Wang, Yue;Xia, Shibin
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.151-158
    • /
    • 2020
  • ACF preparation from different materials has been attached with great attention during these years. This study was conducted to prepare activated carbon fiber (ACF) from luffa through the processes i.e pre-treatment, pre-oxidation and carbonization activation. Besides, this study also characterizes the ACF and its effect, i.e effect of pre-oxidation time and temperature also activation time and temperature on the compressive strength of ACF were investigated. The results from SEM, BET, FTIR and XRD show that the ACF is very efficient. The products under the optimum conditions had a specific surface area of 478.441 m2 /g with an average pore diameter of 3.783nm, and a pore volume of 0.193 cm3 /g. The surface of the luffa fiber is degummed and exposed, which is beneficial to the subsequent process and the increase of product properties. The compressive strength of HP-ACF was prepared under the optimum conditions, which can reach 0.2461 MPa. ACF is rich in micro-pores and has a good application prospect in the field of environmental protection.

The Effect of Cellulase on the Pore Structure of Cellulose Fibers

  • Park, Sun-Kyu;Venditti Richard A.;Abrecht David G.;Jameel Hasan;Pawlak Joel J.;Lee, Jung-Myoung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.43-49
    • /
    • 2006
  • The surface and pore structure of cellulose fibers have a significant impact on the properties and performance in applications. Cellulase enzymatic hydrolysis of cellulose fibers can result in changes to the surface and pore structure thus providing a useful tool for fiber modification. This research characterizes these changes using various test methods such as fiber dimension, water retention value, hard-to-remove water content, freezing and non-freezing bound water content, polymer adsorption, and crystallinity index. For a high-dosage enzyme treatment (0.10 g/g), the fiber length was significantly decreased and the fibers were 'cut' in the cross direction, not in the axial direction. The swelling capacities as measured by the WRV and HR water content increased for the high-dosage treatment. Three independent measurements (non-freezing bound water, polymer adsorption, and crystallinity index) are in good agreement with the statement that the amorphous regions of cellulose fibers are a more readily available substrate relative to crystalline regions. Based on the experimental results obtained herein, a model was proposed to explain surface and pore structure modification of cellulose fibers via enzymatic treatment.

  • PDF

Effect of Kenaf Fiber Content and Length on the Cure Characteristic, Hardness, Tensile Modulus, and Abrasion of Kenaf/Natural Rubber Composites in the Presence and Absence of Kenaf Fiber Treatment with Adhesive Solution (접착용액을 이용한 케나프섬유 처리 유·무에 따른 케나프/천연고무 복합재료의 경화특성, 경도, 인장탄성률 및 마모에 미치는 케나프섬유의 함량 및 길이의 영향)

  • Cho, Yi-Seok;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.19 no.2
    • /
    • pp.60-67
    • /
    • 2018
  • In the present study, when the surface of kenaf, which is an environmentally friendly natural fiber, was treated by using adhesive solution containing Chemlok 402, the effects of fiber surface treatment, fiber content and fiber length on the cure characteristics, hardness, tensile modulus and abrasion resistance of kenaf/natural rubber composites were investigated. The kenaf fiber contents consisting of the composites were varied with 0, 5, 10, 15, and 29 phr at a fixed fiber length of 2 mm and also the fiber length was varied with 2, 35, and 70 mm at a fixed fiber content of 5 phr. The Tmax and tc90 values, Shore A hardness, tensile modulus, and abrasion resistance of natural rubber composites strongly depended on the kenaf fiber content and length. The characteristics of the composite with kenaf fibers treated with the adhesive solution containing Chemlok 402 were higher than those untreated. This is ascribed to the improved interfacial adhesion between the treated kenaf fiber and the rubber matrix. This study suggests that an appropriate use of adhesive solution may be possible to increase the properties of natural fiber-reinforced composites.

Surface Treatment of Carbon Fiber by Hydrogen Sulfide (탄소섬유 표면의 H2S 처리에 관한 연구)

  • Shin, Kyoung-Han;Han, Jeong-Ryeon
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.176-181
    • /
    • 1990
  • For the purpose of the improvement of interfacial shear strength in carbon fiber/aluminum matrix composite material, polyacrylonitrile-based carbon fibers were surface treated by hydrogen sulfide gas continuously between 400 and $600^{\circ}C$. Surface treated carbon fibers were analysed by scanning electron microscope. The existence of sulfur compound on treated carbon fiber surfaces was confirmed, and carbon and oxygen contents of the fiber surfaces were examined by X-ray photoelectron spectroscopy. Optimum treating temperature for the adsorption of sulfur on the carbon fiber surface was $500^{\circ}C$. Sulfur compounds on the carbon fiber surfaces form the structures of disulfide, $(S)_n$ and thiophene. The decrease in the tensile strength of the carbon fibers was observed less than about 5%.

  • PDF

Effects of Pre-treatments on the Oil Palm EFB Fibers (오일팜 EFB 섬유의 전처리 영향 평가)

  • Kim, Dong-Seop;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.6
    • /
    • pp.36-42
    • /
    • 2012
  • The empty fruit bunch fibers(EFB) of oil palm were examined for optimal utilization of the EFB fibers. The EFB fibers were obtained by shredding EFB, followe by removal of fines. The surface properties of the fibers were modified with various pre-treatments, such as hot water extraction, the soaking treatments with NaOH, $ClO_2$ and n-hexane. The changes in the fiber surface were examined with FT-IR method, which showed the changes in chemical compositions such as pectin, lignin, and etc. according to the pre-treatment methods. And the z-directional tensile testing of the fiber mold made of the treated EFB fibers showed the changes in the bonding strength by the pre-treatments. The fiber mold made of EFB fibers treated with $ClO_2$ showed the greater increase in the tensile energy absorption although the NaOH treatment resulted in the severer impact on the EFB fibers.

Preparation and characterization of carbon fiber-reinforced thermosetting composites: a review

  • Jin, Fan-Long;Park, Soo-Jin
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.67-77
    • /
    • 2015
  • Carbon fibers (CFs) have a unique combination of properties which allow them to be widely used as reinforcing materials in advanced polymer composites. The mechanical properties of CF-reinforced polymer composites are governed mainly by the quality of interfacial adhesion between the CFs and the polymer matrix. Surface treatments of CFs are generally carried out to introduce chemical functional groups on the fiber surfaces, which provide the ability to control the surface characteristics of CFs. In this study, we review recent experimental studies concerning various surface treatment methods for CFs. In addition, direct examples of the preparation and properties of CF-reinforced thermosetting composites are discussed.

Properties of Concrete using Surface Treatment Recycled Aggregates and Steel Fibers (강섬유보강(鋼纖維補强) 표면처리(表面處理) 순환골재(循環骨材)콘크리트의 특성(特性))

  • Bae, Ju-Seong;Kim, Nam-Wook
    • Resources Recycling
    • /
    • v.20 no.1
    • /
    • pp.46-53
    • /
    • 2011
  • The recycled aggregate produced from the waste concrete have the disadvantages in the quality for the natural aggregate. Therefore, in order to reuse the recycled aggregate widely it is a previous subject to improve the quality of recycled aggregate. We deduced the more effective surface treatment method using the colloidal silica solution for quality improvement of recycled aggregate. This study aimed to verify the influences of the deduced surface treatment method and the reinforcement of steel fiber to the properties of concrete. For this object, we inquired into the results of the strengths and the flexural failure tests for the five kinds of concrete specimens.