Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.2.067

Preparation and characterization of carbon fiber-reinforced thermosetting composites: a review  

Jin, Fan-Long (Department of Polymer Materials, Jilin Institute of Chemical Technology)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Carbon letters / v.16, no.2, 2015 , pp. 67-77 More about this Journal
Abstract
Carbon fibers (CFs) have a unique combination of properties which allow them to be widely used as reinforcing materials in advanced polymer composites. The mechanical properties of CF-reinforced polymer composites are governed mainly by the quality of interfacial adhesion between the CFs and the polymer matrix. Surface treatments of CFs are generally carried out to introduce chemical functional groups on the fiber surfaces, which provide the ability to control the surface characteristics of CFs. In this study, we review recent experimental studies concerning various surface treatment methods for CFs. In addition, direct examples of the preparation and properties of CF-reinforced thermosetting composites are discussed.
Keywords
carbon fibers; thermosetting; surface treatment; composites; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Ren P, Liang G, Zhang Z. Influence of epoxy sizing of carbon-fiber on the properties of carbon fiber/cyanate ester composites. Polym Compos, 27, 591 (2006). http://dx.doi.org/10.1002/pc.20230.   DOI   ScienceOn
2 Dong W, Liu HC, Park SJ, Jin FL. Fracture toughness improvement of epoxy resins with short carbon fibers. J Ind Eng Chem, 20, 1220 (2014). http://dx.doi.org/10.1016/j.jiec.2013.06.053.   DOI   ScienceOn
3 Park SJ, Jang YS, Rhee KY. Interlaminar and ductile characteristics of carbon fibers-reinforced plastics produced by nanoscaled electroless nickel plating on carbon fiber surfaces. J Colloid Interface Sci, 245, 383 (2002). http://dx.doi.org/10.1006/jcis.2001.8040.   DOI
4 Park SJ, Seo MK, Rhee KY. Studies on mechanical interfacial properties of oxy-fluorinated carbon fibers-reinforced composites. Mater Sci Eng A, 356, 219 (2003). http://dx.doi.org/10.1016/S0921-5093(03)00134-5.   DOI
5 Moaseri E, Maghrebi M, Baniadam M. Improvements in mechanical properties of carbon fiber-reinforced epoxy composites: a microwave- assisted approach in functionalization of carbon fiber via diamines. Mater Des, 55, 644 (2014). http://dx.doi.org/10.1016/j.matdes.2013.10.040.   DOI
6 Siegfried M, Tola C, Claes M, Lomov SV, Verpoest I, Gorbatikh L. Impact and residual after impact properties of carbon fiber/epoxy composites modified with carbon nanotubes. Compos Struct, 111, 488 (2014). http://dx.doi.org/10.1016/j.compstruct.2014.01.035.   DOI
7 Choi MH, Jeon BH, Chung IJ. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites. Polymer, 41, 3243 (2000). http://dx.doi.org/10.1016/S0032-3861(99)00532-7.   DOI
8 Vilcakova J, Saha P, Kresalek V, Quadrat O. Pre-exponential factor and activation energy of electrical conductivity in polyester resin/carbon fibre composites. Synth Met, 113, 83 (2000). http://dx.doi.org/10.1016/S0379-6779(99)00454-3.   DOI
9 Vilciakova J, Saha P, Quadrat O. Electrical conductivity of carbon fibres/polyester resin composites in the percolation threshold region. Eur Polym J, 38, 2343 (2002). http://dx.doi.org/10.1016/S0014-3057(02)00145-3.   DOI
10 Yudin VE, Goykhman MY, Balik K, Glogar P, Gubanova GN, Kudriavtsev VV. Carbonization behaviour of some polyimide resins reinforced with carbon fibers. Carbon, 38, 5 (2000). http://dx.doi.org/10.1016/S0008-6223(99)00073-1.   DOI
11 Mascia L, Zhang Z, Shaw SJ. Carbon fibre composites based on polyimide/silica ceramers: aspects of structure-properties relationship. Composites A, 27, 1211 (1996). http://dx.doi.org/10.1016/1359-835X(96)00082-6.   DOI
12 Liu A, Guo M, Gao J, Zhao M. Influence of bond coat on shear adhesion strength of erosion and thermal resistant coating for carbon fiber reinforced thermosetting polyimide. Compos Sci Technol, 201, 2696 (2006). http://dx.doi.org/10.1016/j.surfcoat.2006.05.012.   DOI
13 Xu J, Donohoe JP, Pittman CU Jr. Preparation, electrical and mechanical properties of vapor grown carbon fiber (VGCF)/vinyl ester composites. Composites A, 35, 693 (2004). http://dx.doi.org/10.1016/j.compositesa.2004.02.016.   DOI
14 Kumar S, Satapathy BK, Patnaik A. Thermo-mechanical correlations to erosion performance of short carbon fibre reinforced vinyl ester resin composites. Mater Des, 32, 2260 (2011). http://dx.doi.org/10.1016/j.matdes.2010.11.019.   DOI
15 Markovic V, Marinkovic S. A study of pyrolysis of phenolic resin reinforced with carbon fibers and oxidized PAN fibres. Carbon, 18, 329 (1980). http://dx.doi.org/10.1016/0008-6223(80)90004-4.   DOI
16 Kumar S, Satapathy BK, Patnaik A. Thermo-mechanical correlations to erosion performance of short glass/carbon fiber reinforced vinyl ester resin hybrid composites. Comput Mater Sci, 60, 250 (2012). http://dx.doi.org/10.1016/j.commatsci.2012.03.021.   DOI
17 Chung K, Seferis JC. Evaluation of thermal degradation on carbon fiber/cyanate ester composites. Polym Degrad Stab, 71, 425 (2001). http://dx.doi.org/10.1016/S0141-3910(00)00194-4.   DOI
18 Li J, Fan Q, Chen Z, Huang K, Cheng Y. Effect of electropolymer sizing of carbon fiber on mechanical properties of phenolic resin composites. Trans Nonferrous Met Soc China, 16, S457 (2006). http://dx.doi.org/10.1016/S1003-6326(06)60233-1.   DOI
19 Singh AP, Garg P, Alam F, Singh K, Mathur RB, Tandon RP, Chandra A, Dhawan SK. Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, $\gamma$-$Fe_2O_3$ and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon, 50, 3868 (2012). http://dx.doi.org/10.1016/j.car-bon.2012.04.030.   DOI
20 Wyatt RC, Ashbee KHG. Debonding in carbon fiber/polyester resin composites exposed to water: comparison with 'E' glass fiber composites. Fibre Sci Tech, 2, 29 (1969). http://dx.doi.org/10.1016/0015-0568(69)90029-3.   DOI
21 Sadeghian R, Gangireddy S, Minaie B, Hsiao KT. Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Composites A, 37, 1787 (2006). http://dx.doi.org/10.1016/j.compositesa.2005.09.010.   DOI
22 Naganuma T, Naito K, Yang JM, Kyono J, Sasakura D, Kagawa Y. The effect of a compliant polyimide nanocoating on the tensile properties of a high strength PAN-based carbon fiber. Compos Sci Technol, 69, 1319 (2009). http://dx.doi.org/10.1016/j.compscitech.2009.03.002.   DOI
23 Hsiao KT, Gangireddy S. Investigation on the spring-in phenomenon of carbon nanofiber-glass fiber/polyester composites manufactured with vacuum assisted resin transfer molding. Composites A, 39, 834 (2008). http://dx.doi.org/10.1016/j.compositesa.2008.01.015.   DOI
24 Srivastava VK, Rastogi A, Goel SC, Chukowry SK. Implantation of tricalcium phosphate-polyvinyl alcohol filled carbon fibre reinforced polyester resin composites into bone marrow of rabbits. Mater Sci Eng A, 448, 335 (2007). http://dx.doi.org/10.1016/j.msea.2006.11.004.   DOI
25 Xie J, Xin D, Cao H, Wang C, Zhao Y, Yao L, Ji F, Qiu Y. Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment. Surf Coat Technol, 206, 191 (2011). http://dx.doi.org/10.1016/j.surfcoat.2011.04.016.   DOI
26 Verghese KNE, Jensen RE, Lesko JJ, Ward TC. Effects of molecular relaxation behavior on sized carbon fiber-vinyl ester matrix composite properties. Polymer, 42, 1633 (2001). http://dx.doi.org/10.1016/S0032-3861(00)00351-7.   DOI
27 Wonderly C, Grenestedt J, Fernlund G, Cepus E. Comparison of mechanical properties of glass fiber/vinyl ester and carbon fiber/vinyl ester composites. Composites B, 36, 417 (2005). http://dx.doi.org/10.1016/j.compositesb.2005.01.004.   DOI
28 Shin HK, Park M, Kang PH, Choi HS, Park SJ. Preparation and characterization of polyacrylonitrile-based carbon fibers produced by electron beam irradiation pretreatment. J Ind Eng Chem, 20, 3789 (2014). http://dx.doi.org/10.1016/j.jiec.2013.12.080.   DOI
29 Diaz A, Guizar-Sicairos M, Poeppel A, Menzel A, Bunk O. Characterization of carbon fibers using X-ray phase nanotomography. Carbon, 67, 98 (2014). http://dx.doi.org/10.1016/j.carbon.2013.09.066.   DOI
30 Seo MK, Min BG, Park SJ. Carbon fibers (II): recent technical trends and market prospects of carbon fibers. Carbon Lett, 9, 324 (2008).   DOI
31 Zhou G, Byun JH, Lee SB, Yi JW, Lee W, Lee SK, Kim BS, Park JK, Lee SG, He L. Nano structural analysis on stiffening phenomena of PAN-based carbon fibers during tensile deformation. Carbon, 76, 232 (2014). http://dx.doi.org/10.1016/j.carbon.2014.04.073.   DOI
32 Seo MK, Park SH, Kang SJ, Park SJ. Carbon fibers (III): recent technical and patent trends. Carbon Lett, 10, 43 (2009).   DOI
33 Speiser M, Henzler S, Hageroth U, Renfftlen A, Muller A, Schawaller D, Sandig B, Buchmeiser MR. Hollow carbon fibers with tailored porosity and rim-thickness. Carbon, 63, 554 (2013). http://dx.doi.org/10.1016/j.carbon.2013.07.036.   DOI
34 Jeong E, Kim J, Cho SH, Kim J, Han IS, Lee YS. New application of layered silicates for carbon fiber reinforced carbon composites. J Ind Eng Chem, 17, 191 (2011). http://dx.doi.org/10.1016/j.jiec.2011.02.032.   DOI   ScienceOn
35 Alway-Cooper RM, Anderson DP, Ogale AA. Carbon black modification of mesophase pitch-based carbon fibers. Carbon, 59, 40 (2013). http://dx.doi.org/10.1016/j.carbon.2013.02.048.   DOI
36 Yang KS, Kim BH, Yoon SH. Pitch based carbon fibers for automotive body and electrodes. Carbon Lett, 15, 162 (2014). http://dx.doi.org/10.5714/CL.2014.15.3.162.   DOI
37 DeValve C, Pitchumani R. Experimental investigation of the damping enhancement in fiber-reinforced composites with carbon nanotubes. Carbon, 63, 71 (2013). http://dx.doi.org/10.1016/j.carbon.2013.06.041.   DOI
38 Choi KE, Seo MK. A study on the preparation of the eco-friendly carbon fibers-reinforced composites. Carbon Lett, 14, 58 (2013). http://dx.doi.org/10.5714/CL.2012.14.1.058.   DOI   ScienceOn
39 Kim BH, Yang KS. Structure and electrochemical properties of electrospun carbon fiber composites containing grapheme. J Ind Eng Chem, 20, 3474 (2014). http://dx.doi.org/10.1016/j.jiec.2013.12.037.   DOI
40 Hu X, Wang L, Xu F, Xiao T, Zhang Z. In situ observations of fractures in short carbon fiber/epoxy composites. Carbon, 67, 368 (2014). http://dx.doi.org/10.1016/j.carbon.2013.10.007.   DOI
41 Hong MS, Choi WK, An KH, Kang SJ, Park SJ, Lee YS, Kim BJ. Electromagnetic interference shielding behaviors of carbon fibersreinforced polypropylene matrix composites: II. Effects of filler length control. J Ind Eng Chem, 20, 3901 (2014). http://dx.doi.org/10.1016/j.jiec.2013.12.096.   DOI
42 Zhang ZZ, Song HJ, Men XH, Luo ZZ. Effect of carbon fibers surface treatment on tribological performance of polyurethane (PU) composite coating. Wear, 264, 599 (2008). http://dx.doi.org/10.1016/j.wear.2007.05.003.   DOI
43 Zhang H, Zhang Z, Breidt C. Comparison of short carbon fibre surface treatments on epoxy composites: I. Enhancement of the mechanical properties. Compos Sci Technol, 64, 2021 (2004). http://dx.doi.org/10.1016/j.compscitech.2004.02.009.   DOI   ScienceOn
44 Donnet JB, Park SJ. Surface characteristics of pitch-based carbonfibers by inverse gas-chromatography method. Carbon, 29, 955 (1991). http://dx.doi.org/10.1016/0008-6223(91)90174-H.   DOI
45 Hong J, Park DW, Shim SE. A review on thermal conductivity of polymer composites using carbon-based fillers: carbon nanotubes and carbon fibers. Carbon Lett, 11, 347 (2010).   DOI
46 Qin RY, Donnet JB. Influence of thermal and surface treatments on surface properties of pitch-based carbon fibers studied by inverse gas chromatography. Carbon, 32, 165 (1994). http://dx.doi.org/10.1016/0008-6223(94)90022-1.   DOI
47 Yang XP, Wang CZ, Yu YH, Ryu SK. Improvement of CF/ABS composite properties by anodic oxidation of pitch based C-type carbon fiber. Carbon Lett, 3, 80 (2002).
48 Park SJ, Seo MK. Carbon fiber-reinforced polymer composites: preparation, properties, and applications. In: Thomas S, Kuruvilla J, Malhotra SK, Goda K, Sreekala MS, eds. Polymer Composites: Volume 1, Wiley-VCH Verlag GmbH & Co. KGaA, 135 (2012). http://dx.doi.org/10.1002/9783527645213.ch5.
49 Park SJ, Jang YS, Kawasaki J. Studies on nanoscaled Ni-P plating of carbon fiber surfaces in a composite system. Carbon Lett, 3, 77 (2002).
50 Marieta C, Schulz E, Irusta L, Gabilondo N, Tercjak A, Mondragon I. Evaluation of fiber surface treatment and toughening of thermoset matrix on the interfacial behaviour of carbon fiber-reinforced cyanate matrix composites. Compos Sci Technol, 65, 2189 (2005). http://dx.doi.org/10.1016/j.compscitech.2005.05.008.   DOI
51 Park SJ, Kim MH. Effect of acidic anode treatment on carbon fibers for increasing fiber-matrix adhesion and its relationship to interlaminar shear strength of composites. J Mater Sci, 35, 1901 (2000). http://dx.doi.org/10.1023/A:1004754100310.   DOI
52 Park SJ, Cho KS, Ryu SK. Filler-elastomer interactions: influence of oxygen plasma treatment on surface and mechanical properties of carbon black/rubber. Carbon, 41, 1437 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00088-5.   DOI
53 He H, Wang J, Li K, Wang J, Gu J. Mixed resin and carbon fibres surface treatment for preparation of carbon fibres composites with good interfacial bonding strength. Mater Des, 31, 4631 (2010). http://dx.doi.org/10.1016/j.matdes.2010.05.031.   DOI
54 Park SJ, Jang YS, Shim JW, Ryu SK. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. J Colloid Interface Sci, 260, 259 (2003). http://dx.doi.org/10.1016/S0021-9797(02)00081-4.   DOI
55 Park SJ, Seo MK, Lee YS. Surface characteristics of fluorinemodified PAN-based carbon fibers. Carbon, 41, 723 (2003). http://dx.doi.org/10.1016/S0008-6223(02)00384-6.   DOI
56 Park SJ, Park BJ. Electrochemically modified PAN carbon fibers and interfacial adhesion in epoxy-resin composites. J Mater Sci Lett, 18, 47 (1999). http://dx.doi.org/10.1023/A:1006673309571.   DOI
57 Park SJ, Kim BJ. Effect of Ni plating on mechanical interfacial properties of carbon fibers-reinforced composites. Carbon Lett, 3, 152 (2002).
58 Jin FL, Lee SY, Park SJ. Polymer matrices for carbon fiber-reinforced polymer composites. Carbon Lett, 14, 76 (2013). http://dx.doi.org/10.5714/CL.2013.14.2.076.   DOI
59 Cao H, Huang Y, Zhang Z, Sun J. Uniform modification of carbon fibers surface in 3-D fabrics using intermittent electrochemical treatment. Compos Sci Technol, 65, 1655 (2005). http://dx.doi.org/10.1016/j.compscitech.2005.02.018.   DOI
60 Park SJ, Seo MK, Lee YS. Surface and mechanical interfacial properties of oxyfluorinated carbon fibers-reinforced composites. Carbon Lett, 4, 69 (2003).
61 Park SJ, Jin FL, Lee JR. Synthesis and thermal properties of epoxidized vegetable oil. Macromol Rapid Commun, 25, 724 (2004). http://dx.doi.org/10.1002/marc.200300191.   DOI
62 Vieille B, Casado VM, Bouvet C. About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic- and thermosetting-composites: a comparative study. Compos Struct, 101, 9 (2013). http://dx.doi.org/10.1016/j.compstruct.2013.01.025.   DOI
63 Park SJ, Jin FL, Lee JR. Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil. Mater Sci Eng A, 374, 109 (2004). http://dx.doi.org/10.1016/j.msea.2004.01.002.   DOI   ScienceOn
64 Jin FL, Park SJ. Recent advances in carbon-nanotube-based epoxy composites. Carbon Lett, 14, 1 (2013). http://dx.doi.org/10.5714/CL.2012.14.1.001.   DOI   ScienceOn
65 Park SJ, Jin FL, Lee JR. Effect of biodegradable epoxidized castor oil on physicochemical and mechanical properties of epoxy resins. Macromol Chem Phys, 205, 2048 ( 2004). http://dx.doi.org/10.1002/macp.200400214.   DOI
66 Park SJ, Oh JS, Rhee KY. Effect of atmospheric plasma treatment of carbon fibers on crack resistance of carbon fibers-reinforced epoxy composites. Carbon Lett, 6, 106 (2005).
67 Park SJ, Jin FL, Nicolais L. Epoxy resins: fluorine systems. In Wiley Encyclopedia of Composites, John Wiley & Sons, 842 (2011). http://dx.doi.org/10.1002/9781118097298.weoc076.
68 Park SJ, Jin FL. Thermal stabilities and dynamic mechanical properties of sulfone-containing epoxy resin cured with anhydride. Polym Degrad Stab, 86, 515 (2004). http://dx.doi.org/10.1016/j.polymdegradstab.2004.06.003.   DOI
69 Huang Z, Sugiyama S, Yanagimoto J. Hybrid joining process for carbon fiber reinforced thermosetting plastic and metallic thin sheets by chemical bonding and plastic deformation. J Mater Process Technol, 213, 1864 (2013). http://dx.doi.org/10.1016/j.jmatprotec.2013.04.015.   DOI
70 Park SJ, Jin FL, Lee C. Preparation and physical properties of hollow glass microspheres-reinforced epoxy matrix resins. Mater Sci Eng A, 402, 335 (2005). http://dx.doi.org/10.1016/j.msea.2005.05.015.   DOI
71 Zhang G, Sun S, Yang D, Dodelet JP, Sacher E. The surface analytical characterization of carbon fibers functionalized by $H_2SO_4/HNO_3$ treatment. Carbon, 46, 196 (2008). http://dx.doi.org/10.1016/j.carbon.2007.11.002.   DOI
72 Li J, Cai CL. The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites. Curr Appl Phys, 11, 50 (2011). http://dx.doi.org/10.1016/j.cap.2010.06.017.   DOI
73 Seo MK, Park SJ. Surface characteristics of carbon fibers modified by direct oxyfluorination. J Colloid Interface Sci, 330, 237 (2009). http://dx.doi.org/10.1016/j.jcis.2008.10.005.   DOI
74 Park SJ, Seo MK, Lee JR. Relationship between surface characteristics and interlaminar shear strength of oxyfluorinated carbon fibers in a composite system. J Colloid Interface Sci, 268, 127 (2003). http://dx.doi.org/10.1016/S0021-9797(03)00718-5.   DOI
75 Park SJ, Kim MH, Lee JR, Choi S. Effect of fiber-polymer interactions on fracture toughness behavior of carbon fiber-reinforced epoxy matrix composites. J Colloid Interface Sci, 228, 287 (2000). http://dx.doi.org/10.1006/jcis.2000.6953.   DOI
76 Lee JS, Kang TJ. Changes in physico-chemical and morphological properties of carbon fiber by surface treatment. Carbon, 35, 209 (1997). http://dx.doi.org/10.1016/S0008-6223(96)00138-8.   DOI
77 Ryu SK, Park BJ, Park SJ. XPS analysis of carbon fiber surfaces-anodized and interfacial effects in fiber-epoxy composites. J Colloid Interface Sci, 215, 167 (1999). http://dx.doi.org/10.1006/jcis.1999.6240.   DOI
78 Osbeck S, Ward S, Idriss H. Effect of UV and electrochemical surface treatments on the adsorption and reaction of linear alcohols on non-porous carbon fibre. Appl Surf Sci, 270, 272 (2013). http://dx.doi.org/10.1016/j.apsusc.2012.12.173.   DOI
79 Park SJ, Kim BJ. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior. Mater Sci Eng A, 408, 269 (2005). http://dx.doi.org/10.1016/j.msea.2005.08.129.   DOI
80 Park SJ, Donnet JB. Anodic surface treatment on carbon fibers: determination of acid-base interaction parameter between two unidentical solid surfaces in a composite system. J Colloid Interface Sci, 206, 29 (1998). http://dx.doi.org/10.1006/jcis.1998.5672.   DOI
81 Yuan LY, Chen CS, Shyu SS, Lai JY. Plasma surface treatment on carbon fibers. Part 1: Morphology and surface analysis of plasma etched fibers. Compos Sci Technol, 45, 1 (1992). http://dx.doi.org/10.1016/0266-3538(92)90116-K.   DOI
82 Park SJ, Jang YS. X-ray diffraction and X-ray photoelectron spectroscopy studies of Ni-P deposited onto carbon fiber surfaces: impact properties of a carbon-fiber-reinforced matrix. J Colloid Interface Sci, 263, 170 (2003). http://dx.doi.org/10.1016/S0021-9797(03)00290-X.   DOI
83 Li H, Liang H, He F, Huang Y, Wan Y. Air dielectric barrier discharges plasma surface treatment of three-dimensional braided carbon fiber reinforced epoxy composites. Surf Coat Technol, 203, 1317 (2009). http://dx.doi.org/10.1016/j.surfcoat.2008.10.042.   DOI
84 Iwashita N, Psomiadou E, Sawada Y. Effect of coupling treatment of carbon fiber surface on mechanical properties of carbon fiber reinforced carbon composites. Composites A, 29, 965 (1998). http://dx.doi.org/10.1016/S1359-835X(97)00095-X.   DOI
85 Zhang X, Huang Y, Wang T, Liu L. Influence of fibre surface oxidation-reduction followed by silsesquioxane coating treatment on interfacial mechanical properties of carbon fibre/polyarylacetylene composites. Composites A, 38, 936 (2007). http://dx.doi.org/10.1016/j.compositesa.2006.07.003.   DOI
86 Park SJ, Jang YS. Interfacial characteristics and fracture toughness of electrolytically Ni-plated carbon fiber-reinforced phenolic resin matrix composites. J Colloid Interface Sci, 237, 91 (2001). http://dx.doi.org/10.1006/jcis.2001.7441.   DOI
87 Barton JM, Hamerton I, Jones JR, Stedman JC. Mechanical properties of tough, high temperature carbon fibre composites from novel functionalized aryl cyanate ester polymers. Polymer, 37, 4519 (1996). http://dx.doi.org/10.1016/0032-3861(96)00053-5.   DOI
88 Ren P, Liang G, Zhang Z. Epoxy-modified cyanate ester resin and its high- modulus carbon-fiber composites. Polym Compos, 27, 402 (2006). http://dx.doi.org/10.1002/pc.20207.   DOI