• 제목/요약/키워드: fiber surface treatment

검색결과 491건 처리시간 0.032초

Hydrophobic modification of PVDF hollow fiber membranes using polydimethylsiloxane for VMD process

  • Cui, Zhaoliang;Tong, Daqing;Li, Xue;Wang, Xiaozu;Wang, Zhaohui
    • Membrane and Water Treatment
    • /
    • 제10권4호
    • /
    • pp.251-257
    • /
    • 2019
  • Fabricating hydrophobic porous membrane is important for exploring the applications of membrane distillation (MD). In the present paper, poly(vinylidene fluoride) (PVDF) hollow fiber membrane was modified by coating polydimethylsiloxane (PDMS) on its surface. The effects of PDMS concentration, cross-linking temperature and cross-linking time on the performance of the composite membranes in a vacuum membrane distillation (VMD) process were investigated. It was found that the hydrophobicity and the VMD performance of the PVDF hollow fiber membrane were obviously improved by coating PDMS. The optimal PDMS concentration, cross-linking temperature and cross-linking time were 0.5 wt%, $80^{\circ}C$, and 9 hr, respectively.

Surface Characterization of the Activated Carbon Fibers After Plasma Polymerization of Allylamine

  • Lu, Na;Tang, Shen;Ryu, Seung-Kon;Choi, Ho-Suk
    • Carbon letters
    • /
    • 제6권4호
    • /
    • pp.243-247
    • /
    • 2005
  • Plasma polymerization of allylamine subsequently after plasma pre-treatment was conducted on the activated carbon fibers (ACFs) for the immobilization of amine groups in the surface of ACFs. The change of structural properties of ACFs with respect to different polymerization conditions was investigated through BET method. The change of surface morphologies of ACFs with respect to different plasma polymerization power was also studied through AFM. It was found that the structural properties such as specific surface area and micropore volume could be optimized under certain plasma deposition conditions. It was reckoned that treatment and deposition showed adverse effect on plasma polymerization, in which the former developed the micro-structures of the ACFs and the latter tended to block the micro pores. The Fourier transform infrared spectroscopy (FTIR) revealed that the poly(allylamine) was successfully immobilized on the surface of ACFs and the amount of the deposited polymer layer was related to the plasma polymerization power. SEM results showed that the plasma deposited polymer layer were small and homogenously distributed. The size and the distribution of particles deposited were closely related to the plasma polymerization power, too.

  • PDF

TREATMENT OF CROWN-ROOT FRACTURE USING FIBER-REINFORCED POST: A CASE STUDY (섬유강화형 포스트를 이용한 치관-치근 파절의 치료: 증례 보고)

  • Lim, Hwa-Shin;La, Ji-Young;Lee, Kwang-Hee;An, So-Youn;Kim, Yun-Hee;Keum, Ki-Seok;Lee, Sang-Bong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • 제39권1호
    • /
    • pp.58-65
    • /
    • 2012
  • The crown-root fracture is defined as a fracture of tooth that contains enamel, dentin and cementum with or without pulp exposure. Generally the fracture lines place obliquely from labial surface, between incisal edge of the crown and marginal gingiva, to palatal surface subgingivally. If the fracture line is located supragingivally, the removal of tooth fragment and supragingival restoration can be performed. In subgingival fracture line, the surgical exposure, orthodontic eruption or surgical eruption can be considered. If the fracture line is too deep to restorate, extraction or decoronation can be selected. In children and adolescents, the extraction should be the last option. Another option to select before extraction is the restoration using fiber-reinforced post and the reattachment of tooth fragment. The fiber-rainforced post enhances the retention and the durability of tooth fragment. The reattachment of crown fragment using resin adhesive system is considered minimal invasive treatment biologically. This case reports the treatment of crown-root fracture using the reattachment of crown fragment and the insertion of fiber-reinforced post.

Removal of Trihalomethanes from Tap Water using Activated Carbon Fiber (활성탄소섬유를 사용한 수돗물 내 트리할로메탄의 제거)

  • Yoo, Hwa In;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • 제50권1호
    • /
    • pp.83-87
    • /
    • 2012
  • Activated carbon fiber (ACF) was used to remove four kinds of trihalomethanes(THMs) from tap water which were remained as by-products during the chlorination of water. Adsorption capacity was investigated as a function of THMs concentration and solution temperature, and adsorption mechanism was studied in relating to the surface characteristics of ACF. All the four kinds of THMs were rapidly adsorbed on the surface of ACF by physical adsorption due to the enormous surface micropores and chemical adsorption due to the hydrogen bonds, showing a Langmuir type adsorption isotherm. Langmuir type is especially profitable for the adsorption of low level adsorptives. ACF was very effective for the removal of THMs from tap water because the THMs concentration is below $30{\mu}g/L$ in tap water. The adsorption amount of THMs on ACF increased in order of the number of brom atom; chloroform, bromodichloromethane, dibromochloromethane, and bromoform. The adsorption capacity increased as increasing the number of brom atom due to the decrease of polarity in solution. The adsorption capacity of THMs on ACF can be enhanced by proper surface treatment of ACF.

Effect of Corrugating Medium's Properties on Microflute Formation (part2) -Relative importance of stiffness and fiber bonding on microflute formation- (원지특성에 따른 Microflute의 골 성형성(제2보) -Microflute 골 성형성에 영향하는 스트프니스와 섬유간 결합의 중요성 비교 -)

  • Min, Kyung-Eun;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • 제37권2호
    • /
    • pp.64-69
    • /
    • 2005
  • Suitability of corrugating medium for microflute shape formation was analyzed in terms of fiber bonding strength and paper stiffness. Cationic starch and oxidized starch were applied to corrugating medium's surface by bar coater in order to compare the relative importance of stiffness and fiber bonding on microflute formation. It was found that cationic starch was beneficial for better stiffness and oxidized starch was beneficial for better fiber bonding. The results of the decreasing ratio of length by flute formation, the calculated conditioning effect, and the flute height before and after conditioning treatment were obtained. For better microflute shape formation and its preservation it was found that fiber bonding strength should be increased, proper stiffness was required, and resistance to water absorption from surroundings should be increased.

The Method of Thermograph using Thermoelectric Sensor Device in the Carbon fiber Thick Films (Carbon fiber 후막형 열전센서 소자를 이용한 적외선 체열진단)

  • Song, Min-Jong;Dong, Kyung-Rae;Kim, Chang-Bok;Choi, Seong-Kwan;Park, Yong-Soon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • 제12권2호
    • /
    • pp.145-150
    • /
    • 2010
  • Thick films of carbon fiber were prepared by a heating element of plan shape made in Darin co., We have investigated surface morphology of the specimen depending on heat-treatment temperatures. Scanning electron microscope(SEM) image of carbon fiber thick films of the specimen heat treated shows a grain growth at $1200^{\circ}C$ and becomes a poly-crystallization at $1350^{\circ}C$. The variation of resistivity at the thermally annealed specimen above $600^{\circ}C$ depends on type of the substrates. It may be due to a variation of film thickness and a difference of interfacial phenomena. A heating element of features was affected significantly by skin blood and quantity of heat of the body physiological function. After radiation of farinfrared for plate heating element, the function of biometric physiological is considered of skin blood flow and calorie which greatly affects on individuals. Electromagnetic wave was not influence on the body.

  • PDF

Blood Compatibility of Hollow Fiber Membranes Treated by Plasma Polymerization (플라즈마 중합 처리된 중공사 막의 혈액 적합성)

  • Lee, Sam-Cheol;Kwon, O-Sung
    • Membrane Journal
    • /
    • 제15권3호
    • /
    • pp.233-240
    • /
    • 2005
  • Surface modification of polypropylene hollow fiber membranes was performed in order to develop blood-compatibility biomaterials for use in the blood contacting surfaces and oxygenation membranes of a lung assist device (LAD), important medical device even more useful. Blood compatibility of materials was determined by using anticoagulation blood and evaluating formation of blood clots on their surfaces as well as activation of plasma coagulation cascade, platelet adhesion, and aggregation. It was verified that the number of platelets on the silicone coated fibers was significantly lower than that on untreated fiber membrane, indicating improved blood compatibility. It was also found that the polypropylene hollow fiber membranes using plasma treatment exhibited suppression of complement activation in blood compatibility test.

Development of Pilot-Scale Manufacturing Process of SiC Fiber from Polycarbosilane Precursor with Excellent Mechanical Property at Highly Oxidation Condition and High Temperature (폴리카보실란 전구체로부터 고온 산화성분위기서 기계적물성이 우수한 파이롯-규모의 탄화규소섬유 제조공정 개발)

  • Yoon, B.I.;Choi, W.C.;Kim, J.I.;Kim, J.S.;Kang, H.G.;Kim, M.J.
    • Composites Research
    • /
    • 제30권2호
    • /
    • pp.116-125
    • /
    • 2017
  • The purpose of this study is to develop silicon carbide fiber showing an excellent mechanical properties under highly oxidative conditions at high temperature. Polycarbosilane(PCS) as a preceramic precursor was used for making the SiC fiber. PCS fiber was taken by melt spinning method followed by melting the PCS at $300{\sim}350^{\circ}C$ in N2 gas. The Curing of PCS fiber was carried out in air oxygen chamber, prior to high temperature pyrolysis. Degree of cure was calculated by characteristic peak's ratio of Si-H to $Si-CH_3$ in FT-IR spectra before and after curing of PCS fiber. The properties of SiC fiber was affected greatly by the degree of cure. The SiC fiber produced by controlling fiber tension during heat treatment showed good properties. The SiC fiber exposed to $1000^{\circ}C$ at air from 1 min. up to maximum 50 hrs showed around 60% reduction in tensile strength. We found that large amount of carbon content on the fiber surface after long-term exposure has resulted in lower tensile strength.

Preparation and properties of antibacterial activated carbon fiber (항균성 탄소섬유의 제조와 특성)

  • 오원춘;김범수;임창성;장원철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제12권4호
    • /
    • pp.165-171
    • /
    • 2002
  • The study on the adsorption, the surface properties and the antibacterial effects of the metal-treated pitch based activated carbon fibers was carried out. From the adsorption studies on the series of metal-treated activated carbon fiber, the specific surface areas of the metal treated activated carbon fiber obtained from BET equation were in the range of 113.2~1574 $m^2$/g for the Ag-ACFs. And that of Cu treated ACF are distributed to 688.2-887.8 $\m^2$/g. And, the specific surface areas of the Ni-treated pitch based ACFs were in the range of 692.6~895.2 $\m^2$/g. From the ${\alpha}_s$- method, 0.06~1.1 cm^3/g of the micropore volumes were obtained from Ag-ACFs. And, 0.1~0.2 cm^3/ and 0.2~0.6 cm^3/g of the micropore volumes were obtained from Cu and Ni-ACFs, respectively. And, from the SEM morphology results, it was observed that the surface of activated carbon fiber are partially blocked and coated by metal after the treatment. Finally, from the antibacterial effects of metal-treated activated carbon fiber against E. coli, the areas of antibacterial effect become larger with the increase in mole ratio of metal treated. And, from the antibacterial effects using Shake flask method against E. coli, the percentage of the effects was 92.5~100 % and the antibacterial effect was increased with the increase in mole concentration of metal treated.

Application of the Multi-Focusing Composite Image for the Cotton Fiber Luster Analysis and Cotton Fabric Luster Analysis (다중초점화상기법(多重焦點畵像技法)을 적용(適用)한 면섬유광택분석(綿纖維光澤分析) 및 면직물(綿織物)의 광택(光澤)에 관(關)한 연구(硏究))

  • Mun, Sun-Hye;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • 제7권5호
    • /
    • pp.108-118
    • /
    • 2003
  • Surface properties, including the texture and the luster, of cotton fibers and yarns thereof play an important role in textile technology. The convolutions and the cross-sectional shape of the cotton fiber affect the fabric texture and the luster accordingly. Mercerization of the cotton fabric affects the luster, strength, and other properties of the fabric. In this study, the effect of mercerization was examined on the luster of the cotton fabric, together with the effect of polishing treatment. One of the traditional methods determining the fabric luster is the use of glossmeter or goniometric glossmeter. The use of glossmeter gives successful results in determining the gloss of rather flat and continuous surface such as plastic sheet, painted surface, or paper products. Since the textile fabrics have diverse surface structures and textures, these could be regarded as having three-dimensional surface. Such complexity imposes some difficulties for differentiating subtle surface luster properties of diverse textile fabrics. The advancement in the area of imaging technologies has enabled the micro-scale analysis of the surface textures and the fabric luster recently. Using a CCD camera, the surface luster images were taken at various incident illumination conditions. Microscale analysis, including the blob analysis, of the images could differentiate the subtle luster properties present in a group of cotton fabric samples comprising mercerized cotton fabric, non-mercerized cotton fabric, polished cotton fabric, and a 'standard' cotton fabric. The glossmeter measurement gave satisfactory but limited differentiation among the samples, whose luster differences are easily recognizable with visual observation, except for the mercerized cotton fabric sample and the non-mercerized cotton fabric. The microscale analysis of the fabric luster could, therefore, help understand the nature of diverse textile fabric luster.