• Title/Summary/Keyword: fiber orientation effects

Search Result 115, Processing Time 0.032 seconds

Strength and Impact Damage Characteristics of A17075/CFRP Sandwitch Pannel by Using Automobiles (자동차용 경량화 A17075 / CFRP 샌드위치 판넬의 강도와 충격손상 특성)

  • Yoon, Han-Ki;Lee, Jong-Ho;Park, Yi-Hyun;Lee, Je-Heon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.295-300
    • /
    • 2002
  • To establish an optimum condition in the surface treatment and curing process will be an important parameters for the fabrication of multilayered hybrid composite materials, A17075/CFRP (CARALL : carbon fiber reinforce aluminum laminates). Effects of carbon fiber direction and thickness variation in tensile strength were investigated. And impact damage behavior of carbon fiber reinforce plastic (CFRP) and CARALL were investigated also, it was found that a partial stress increase in order of epoxy adhesive, A17075, CFRP. And the partial stress of CFRP carried out a great portion of applied stress. The impact damage resistance of CARALL was higher than that of CFRP. This is because both side Al sheet of CARALL absorb a great of impact damage.

  • PDF

Meso-scale model for calculating the stiffness of filament wound composites considering fiber undulations

  • Shen, Chuangshi;Han, Xiaoping
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.273-279
    • /
    • 2017
  • A meso-scale model is proposed to study filament-wound composites with fiber undulations and crossovers. First, the crossover and undulation region is classified as the circumferential undulation and the helical undulation. Next, the two undulations are separately regarded as a series of sub-models to describe the meso-structure of undulations by using meso-parameters such as fiber orientation, fiber inclination angle, resin rich area, fiber volume fraction and bundle cross section. With the meso-structure model and the classic laminate theory, a method for calculating the stiffness of filament wound composites is eventually established. The effects of the fiber inclination angle, the fiber and resin volume fraction and the resin rich area on the stiffness are studied. The numerical results show that the elastic moduli for the circumferential undulation region decrease to a great extent as compared with that of the helical undulation region. Moreover, significant decrease in the elastic and shear moduli and increase in the Poisson's ratio are also found for the resin rich area. In addition, thickness and bundle section have evident effect on the equivalent stiffness of the fiber crossover and the undulation region.

A Study on Mean Coefficient of Separation during Compression Molding of Fiber-Reinforced Thermoplastics (섬유강화 열가소성 고분자 복합판의 압축성형에 있어서 평균분리계수에 관한 연구)

  • Kang, K;Jo, S.H.;Lee, D.G.;Kim, E.G
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1146-1153
    • /
    • 1996
  • The properties of FRP(fiber-reinforced plastics) depend not only on the characteristics of the matrix but also on the structure of fiber mat and the fiber type of reinforcement. Therefore it is very important to study the characteristics of reinforcement and matrix. In this paper, a method is proposed which can be used to measure the mean coeffcient of separation for the press molding of FRP, and the mean equivalent coefficient of separation is obtained from the separation coefficient. And the relationship between the mean equivalent coefficient of separation and the structure of fiber mat is discussed. The effects of corrlelation coefficient between separation and orientation on the mean equivalent coefficient are also presented.

Effects of high temperatures and hygrothermals on the collapse characteristics of CFRP thin-walled laminates (고온 .senter dot. 고습환경이 CFRP 적층 원통부재의 압궤특성에 미치는 영향)

  • 곽훈이;김정호;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.650-654
    • /
    • 1995
  • In this study, in order to measure energy-absorbing charactistics in collapse test of CFRP thin-walled laminates and interpretate the cause of decreasing age when collapse test is carried out under the environments of high temperatures and hygrothermals, the moisture absorbing behavior according to the variety of orientation angel is observed and collapse characteristics is compared with the influence of high temperatures and hygrothermals. Especially, we supposed to clearly understand reationship between collapse characteristics in proportion to the variety of orientation angel and moisture absorbing. The value of the maximum loading, mean loading,rate of energy absorption energy per unit volume and mass in CFRP thin-walled laminates on the high temperatures and hygrothermals is measured lower than under no moisture absorbing. The maximum collapse loading in dynamic impact test is taken measurement lower than in static collapse test regarding compared with collapse characteristics conformity with the variety of the CFRP circular laminates in high temperatures and hygrothermals. But the absorbed energy per unit mass and volume is almost same and the biggest amount of energy is shown in the CFRP circular laminates with orientation angel of 15 .deg.. Therefore, in the case of use to CFRP circular laminates with axisymmetric mode, CFRP thin-walled structal members with orientation angel of 10 .deg. , 15 . deg. are generally useful.

  • PDF

Three-Dimensional Flow Analysis for Compression Molding of Unidirectional Fiber-Reinforced Polymeric Composites with Slip Between Mold and Material (섬유강화 플라스틱 복합재의 압축성형에 있어서 이방성과 금형-재료계면의 미끄럼을 고려한 3차원 유한요소해석)

  • Yoon, Doo-Hyun;Jo, Seon-Hyung;Kim, E-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1075-1084
    • /
    • 1999
  • The family of unidirectional continuous fiber reinforced polymeric composites are currently used in automotive bumper beams and load floors. The material properties and mechanical characteristics of the compression molded parts are determined by the curing behavior, fiber orientation and formation of knit lines, which are in turn determined by the mold filling parameters. In this paper, a new model is presented which can be used to predict the 3-dimensional flow under consideration of the slip of mold-composites and anisotropic viscosity of composites during compression molding of unidirectional fiber reinforced thermoplastics for isothermal state. The composites is treated as an incompressible Newtonian fluid. The effects of longitudinal/transverse viscosity ratio A and slip parameter $\alpha$ on the buldging phenomenon and mold filling patterns are also discussed.

Axial buckling response of fiber metal laminate circular cylindrical shells

  • Bidgoli, Ali M. Moniri;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.45-63
    • /
    • 2016
  • Fiber metal laminates (FMLs) represent a high-performance family of hybrid materials which consist of thin metal sheets bonded together with alternating unidirectional fiber layers. In this study, the buckling behavior of a FML circular cylindrical shell under axial compression is investigated via both analytical and finite element approaches. The governing equations are derived based on the first-order shear deformation theory and solved by the Navier solution method. Also, the buckling load of a FML cylindrical shell is calculated using linear eigenvalue analysis in commercial finite element software, ABAQUS. Due to lack of experimental and analytical data for buckling behavior of FML cylindrical shells in the literature, the proposed model is simplified to the full-composite and full-metal cylindrical shells and buckling loads are compared with the available results. Afterwards, the effects of FML parameters such as metal volume fraction (MVF), composite fiber orientation, stacking sequence of layers and geometric parameters are studied on the buckling loads. Results show that the FML layup has the significant effect on the buckling loads of FML cylindrical shells in comparison to the full-composite and full-metal shells. Results of this paper hopefully provide a useful guideline for engineers to design an efficient and economical structure.

3-D Flow Analysis for Compression Molding of Fiber-Reinforced Polymeric Composites with Ratio of Extensional & Shear Viscosity (인장 및 전단점성비를 고려한 섬유강화 플라스틱 복합재의 압축성형에 있어서 3차원 유한요소해석)

  • 조선형;윤두현;김형철;김이곤
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 1999
  • The compression molding is widely used in the automotive industry to produce products that are large, thin, lightweight and stiff. The molded product is formed by squeezing a fiber-reinforced plastic composites. During a molding process of fiber reinforced thermoplastic composites, control of filling patterns in mold, orientation and distribution of fibers are needed to predict the effects of molding parameters on the flow characteristics. It is the objective of this paper to develop an isothermal compression molding simulation that can handle both thin and thick charges and motion of the flow front, and can predict pressure distributions and accurate velocity gradients. The composites are treated as an incompressible Newtonian fluid. The effects of slip parameter $\alpha$ and extensional/shear viscosity ratio $\zeta$ on the mold filling parameters are also discussed.

  • PDF

Optimal design of laminated composite plates to maximise fundamental frequency using MFD method

  • Topal, Umut;Uzman, Umit
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.479-491
    • /
    • 2006
  • This paper deals with optimal fibre orientations of symmetrically laminated fibre reinforced composite structures for maximising the fundamental frequency of small-amplitude. A set of fiber orientation angles in the layers are considered as design variable. The Modified Feasible Direction method is used in order to obtain the optimal designs. The effects of number of layers, boundary conditions, laminate thicknesses, aspect ratios and in-plane loads on the optimal designs are studied.

Dynamic analysis of a laminated composite beam under harmonic load

  • Akbas, S.D.
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.563-573
    • /
    • 2020
  • Dynamic responses of a laminated composite cantilever beam under a harmonic are investigated in this study. The governing equations of problem are derived by using the Lagrange procedure. The Timoshenko beam theory is considered and the Ritz method is implemented in the solution of the problem. The algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of dynamic problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of load parameter, the fiber orientation angles and stacking sequence of laminas on the dynamic responses of the laminated beam are investigated.

Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate

  • Kaci, D. Ait;Madani, K.;Mokhtari, M.;Feaugas, X.;Touzain, S.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.679-699
    • /
    • 2017
  • The aim of this study is to perform a finite element analysis of the Von Mises stresses distribution in the adhesive layer and of the J-Integral for a damaged plate repaired by a composite patch. Firstly, we study the effect of the fiber orientation, especially the position of the layers that have orientation angle different of $0^{\circ}$ from the first layer which is in all cases of our study oriented at ($0^{\circ}$) on the J-Integral. Secondly, we evaluate the effects of the mechanical properties of the patch and the use of a hybrid patch on the reduction of stresses distribution and J-Integral. The results show clearly that the stacking sequence for the composite patch must be selected to absorb optimally the stresses from the damaged area and to position the various layers of the composite under the first layer whose fibers orientation will remain in all cases equal to $0^{\circ}$. The use of a hybrid composite reduces significantly the J-Integral and the stresses in both damaged plate and the adhesive layer.