• 제목/요약/키워드: fiber mixed concrete

검색결과 166건 처리시간 0.029초

외부조건의 변화에 따른 섬유보강콘크리트의 내구성능 정가에 관한 연구 (A Study on the Evaluation of Durability of Fiber Reinforced Concrete According to the Change of External Conditions)

  • 김남욱
    • 한국안전학회지
    • /
    • 제23권5호
    • /
    • pp.97-104
    • /
    • 2008
  • This study was intended to evaluate the permeable performance through a change of reinforcing materials, curing condition, durability evaluation and permeability test, and to select the reinforcing material which could reduce the durability and water tightness from it, as the study for considering how the change of the outside's environment factors that the concrete structure actually contacted with impacted the concrete's durability especially the permeability by referring to such the background of the study. Accordingly, it was judged that evaluating the permeability by considering the severe environment condition where the concrete structure was placed in was more reasonable than measuring the existing permeability coefficient conducted in the sound state for the permeability evaluation of actually-used concrete structure. In this study, it also could be known that the specimen of hybrid fiber reinforced concrete which mixed the long and short steel fiber was the most effective for water tightness enhancement in severe environmental conditions.

실리카흄과 현장기계함침을 이용한 유리섬유 복합재(CAF)의 콘크리트 구조물 보수보강공법 (Repair and Retrofit System of Concrete Structures using Fiber Glass and Epoxy Composite Sheets, Improved Through Utilization of Silica fume and Mechanical Saturator)

  • 유용하;권성준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.785-792
    • /
    • 2000
  • Repair and retrofit system of concrete structures has been developed from conventional reinforced concrete overlaying, steel plate bonding and recently to fiber composite systems. Research and study on carbon, aramid, and glass fiber composite system has been actively carried out from all over the world Glass fiber composite is proved to be competitive technically and enconomically, among fiber composite system. CAF system is a system developed locally using all domestic materal, glass fabric and epoxy, and improved in shear bonding property by utilizing silica fume mixed with epoxy. All the tests on material properties, structural behavior, constructiveness at site and quality control procedure proved to be most appropriate system so far developed. Futher research work is and will be under progress for utilization of this system which will be applied to more adverse situation.

  • PDF

EP 나일론섬유를 혼입한 자기충전콘크리트(SCC)에 관한 실험적 연구 (An Experimental Study on the Self-Consolidating Concrete with EP Nylon Fiber)

  • 류재석;이용수;전중규;전찬기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.159-168
    • /
    • 2011
  • 본 연구에서는 분산제 코팅을 통해 성능 개선된(EP) 나일론 섬유를 혼입한 자기충전 콘크리트의 가능성을 알아보고자 하였으며, 이를 위한 실험 방법으로 나일론 섬유 길이와 다른 유기계 섬유(폴리프로필렌, 셀룰로오스)를 혼입한 경우 그리고 광물질 혼화재(고로슬래그 미분말, 플라이애쉬)의 종류를 달리 혼합한 2성분계 및 3성분계의 경우를 가지고 자기충전 콘크리트의 특성을 검토하였다. 이 실험 결과를 토대로 하여 실구조물 적용을 위한 Mock-up Test를 성능 개선된 나일론 섬유를 혼입한 자기충전콘크리트 와 일반콘크리트를 비교하여 실구조물 활용 가능성을 검토 하였다. 그 결과 굳지 않은 자기충전 콘크리트의 특성, 경화된 자기충전 콘크리트의 특성 및 내구특성을 종합해 볼 때 성능 개선된(EP) 나일론 섬유가 우수함을 알 수 있었고, 성능 개선된 나일론 섬유에 따른 광물질 혼화재 사용에서는 플라이애쉬 보다 고로슬래그 미분말이 우수함을 알 수 있었다.

PP섬유 혼입율 및 잔골재 종류 변화에 따른 고성능 콘크리트의 폭렬특성 (Spalling Characteristics of High Performance Concrete According to Changes in PP Fiber Ratio and Type of Aggregate)

  • 정홍근;김원기;배장춘;한민철;양성환;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 학계
    • /
    • pp.61-64
    • /
    • 2009
  • This study is reviewed fire resistance characteristics of high strength concrete according to changes in PP fiber mixing ratio and type of fine aggregate, and the results can be summarized as follows. As fire resistance characteristics, all plain crushed sands prevented spalling regardless of increase in mixing ratio of PP fiber. Mixtures other than the plain showed satisfactory spalling prevention when 0.05 % or more of PP fiber was mixed. After the fire resistance experiment, the plain showed 5.5 % of mass loss rate when fiber was not mixed and others could not be measured. According to increase in mixing ratio of fiber, river sand with fineness modulus of 2.2 showed most satisfactory result of 34 %${\sim}$42 %. Mass loss rate after fire resistance experiment was most satisfactory at about 10 % in the plain crushed sand without mixing of fiber, and all other mixes with 0.05 % PP fiber or more showed 5${\sim}$10 % loss rate.

  • PDF

플라이애쉬를 이용한 강섬유보강 콘크리트의 내구성에 관한 실험적 연구 (An Experimental Study on the Durability of SFRC Using Fly Ash)

  • 박승범;오광진;이택우;권혁준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.339-344
    • /
    • 1997
  • During recent years the durability of concrete structures has attracted considerable interest in concrete practice, material research and long-term deformation. To preserve the brittleness of concrete as well as energy absorption and impact resistance, amount of fiber usage has greatly increased year to year in the field of public works. When fly ash, fine powder, mixed into concrete, it condensed the void of concrete structure. Expecially, there's a great effect for strength improvement of concrete by initial pozzolanic reactions. Pozzolan reaction, between cement particle and fly ash, can elaborate the micro structure of matrix. So it was able to improve the effect of fiber reinforced by increased adhesion between cement paste and steel fiber. And so, in this paper, we dealt SFRC for the purpose of efficiently using of industrial by-products and its economical manufacturing. Also we performed the test for durability such as chemical resistance, freeze-thaw resistance and accelerated carbonation of SFRC using fly ash.

  • PDF

Tensile Properties of Hybrid Fiber-Reinforced Reactive Powder Concrete After Exposure to Elevated Temperatures

  • Li, Haiyan;Liu, Gang
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권1호
    • /
    • pp.29-37
    • /
    • 2016
  • The paper presents a research project on the tensile properties of RPC mixed with both steel and polypropylene fibers after exposure to $20-900^{\circ}C$. The direct and the indirect tensile strength (in bending) were measured through tensile experiment on dog-bone specimens and bending experiment on $40{\times}40{\times}160mm$ prisms. RPC microstructure was analyzed using scanning electron microscope. The results indicate that, steel fibers can significantly improve the tensile performance of hybrid fiber-reinforced RPC, whereas polypropylene fibers have no obvious effect on the tensile performance. With increasing temperature, the flexural and axial tensile strength of hybrid fiber-reinforced RPC substantially decrease linearly, which attributes to the deteriorating microstructure. Based on the experimental results, equations are established to express the decay of the flexural and tensile strength with increasing temperature.

폴리프로필렌섬유를 혼입한 콘크리트와 화강토콘크리트의 역학적 특성 (Mechanical Properties of Polypropylene Fiber mixed in Concrete and Granite Soil Concrete)

  • 전형순
    • 한국조경학회지
    • /
    • 제46권6호
    • /
    • pp.120-126
    • /
    • 2018
  • 본 연구는 콘크리트에 잔골재와 폴리프로필렌섬유를 혼입한 실험과 화강토와 폴리프로필렌섬유를 혼입한 실험을 하였다. 특히 두 종류의 실험은 폴리프로필렌섬유의 양을 변경하여 슬럼프, 압축강도, 인장강도 등의 역학적 특성에 대하여 실험적으로 규명하였다. 두 종류의 실험 결과를 비교하여 잔골재를 실험 재료로 사용한 경우와 화강토를 사용한 재료를 비교 분석하여 건조 수축 균열로 인한 부분적인 파괴를 예방하고, 가벼워서 사용하기 편한 품질 좋은 조경용 구조물 및 포장재 개발의 기초자료를 수립하는데 목적이 있다. 콘크리트에서 PP 섬유의 양이 증가할수록 PP 섬유의 체적 또한 현저히 증가하게 되므로 슬럼프가 감소해지는 것으로 판단된다. 압축강도의 결과, 화강토콘크리트는 콘크리트 강도의 59%~71% 정도로 측정되었다. PP 섬유의 혼입량이 증가할수록 압축강도는 상대적으로 줄어드는 경향이 나타났다. 인장강도의 결과 화강토 콘크리트는 콘크리트 인장강도의 68%~67% 정도로 나타났다. PP 섬유를 콘크리트나 화강토콘크리트에서 혼입량을 증가시킬수록 압축강도가 감소하는 것으로 나타났다. 그리고 콘크리트와 화강토콘크리트에 폴리프로필렌섬유를 혼입하면 인장강도가 증가하는 것으로 나타났다. 이러한 결과들을 분석해 화강토를 혼입한 콘크리트에 일정량의 PP섬유를 혼입하여 조경분야의 각종 구조물 또는 포장과 관련된 재료에 활용하면 구조물의 취성에 의한 파괴 및 균열로 인한 박리 박락의 방지 개선효과가 있을 것으로 판단된다.

혼입 섬유종류 변화에 따른 고온가열 고강도 콘크리트의 역학적 특성 (Mechanical Properties of High Strength Concrete Subjected to Elevated Temperature Depending on Fiber Types and Contents)

  • 김상식;송용원;이보형;양성환;김성수;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 추계 학술논문 발표대회
    • /
    • pp.95-98
    • /
    • 2007
  • This study investigates the mechanical properties of the high strength concrete in the region of 80MPa corresponding to the temperature and fiber content change. For the properties of the fresh, slump flow is $600{\pm}100mm$, and air content is $3.0{\pm}1.0%$. They satisfy each targets, and there was no difference for the each fiber types. As the propertied of the hardened concrete, the compressive strength at 28 days is indicated over 80MPa, and they are similar to the change of the fiber types. The residual compressive strength in response to the temperature change of the NY, PP, and NY+PP fiber at $200^{\circ}C$ are increased by 115, 114, and 110% on the standard condition, and it is suddenly decreased at $400^{\circ}C$. They are decreased by 33, 19, and 16% on the standard condition at $800^{\circ}C$.

  • PDF

Spalling Properties of High Strength Concrete Mixed with Various Mineral Admixtures Subjected to Fire

  • Han, Cheon-Goo;Han, Min-Cheol;Heo, Young-Sun
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권1호
    • /
    • pp.41-48
    • /
    • 2008
  • This study investigates the spalling properties of high strength concrete designed with various types of mineral admixture and diverse content ratios of polypropylene (PP) fiber. Experimental factors considered in series I are four pozzolan types of mineral admixture and series II consists of three shrinkage reducing types of mineral admixture. PP fiber was added 0.05, 0.10 and 0.15vol. % in each mixture of series I and series II, so that totally 27 specimens including control concretes in each series were prepared. Test results showed that the increase of fiber content decreased the slump flow of fresh concrete and increased or decreased the air content depending on the declining ratio of slump flow. For the properties of compressive strength, all specimens were indicated at around 50 MPa, which is high strength range; especially all specimens in series II were 60 MPa. Fire test was conducted in standard heating curve of ISO 834 with ${\phi}100{\times}200\;mm$ size of cylinder moulds for 1 hour. The specimens incorporating silica fume exhibited severe spalling and most specimens without the silica fume could be protected from the spalling occurrence in only 0.05vol % of PP fiber content. This fire test results demonstrated that the spalling occurrence in high strength concrete was not only affected by concrete strength related to the porosity of microstructure but also, even more influenced by micro pore structure induced by the mineral admixtures.

Effect of silica fume content in concrete blocks on laser-induced explosive spalling behavior

  • Seong Y. Oh;Gwon Lim;Sungmo Nam;Byung-Seon Choi;Taek Soo Kim;Hyunmin Park
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.1988-1993
    • /
    • 2023
  • This experimental study investigated the effect of silica fume mixed in concrete blocks on laser-induced explosion behavior. We used a 5.3 kW fiber laser as a thermal source to induce explosive spalling on a concrete surface blended with and without silica fume. An analytical approach based on the difference in the removal rate and thermal behavior was used to determine the effect of silica fume on laser-induced explosive spalling. A scanner was employed to calculate the laser-scabbled volume of the concrete surface to derive the removal rate. The removal rate of the concrete mixed with silica fume was higher than that of without silica fume. Thermal images acquired during scabbling were used to qualitatively analyze the thermal response of laser-induced explosive spalling on the concrete surface. At the early stage of laser heating, an uneven spatial distribution of surface temperature appeared on the concrete blended with silica fume because of frequent explosive spalling within a small area. By contrast, the spalling frequency was relatively lower in laser-heated concrete without silica fume. Furthermore, we observed that a larger area was removed via a single explosive spalling event owing to its high porosity.