• Title/Summary/Keyword: fiber bragg grating

Search Result 418, Processing Time 0.026 seconds

Simultaneous Measurement of Strain and Temperature by use of Fiber Bragg Grating Written in an Erbium: Ytterbium-Doped Fiber (단일 광섬유 격자와 Erbium과 Ytterbium 첨가된 광섬유를 이용한 스트레인 및 온도의 동시 측정)

  • Jung, Jae-Hoon
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.117-120
    • /
    • 2004
  • We demonstrate a fiber-optic sensor scheme, capable of the simultaneous measurement of strain and temperature using a single fiber Bragg grating written in an erbium: ytterbium-doped fiber. This novel and compact fiber grating based sensor scheme can be used for synchronous measurement of strain and temperature over ranges of $1100\;{\mu}{\varepsilon}$ and $50-180\;^{\circ}C$ with rms errors of $55.8\;{\mu}{\varepsilon}$ and $3^{\circ}C$, respectively. The simple and low-cost sensor approach has a considerable potential, particularly for wide-range strain sensing applications in which high resolution is not required.

  • PDF

Analysis of Fiber-grating External-cavity Laser Diode Using Large-signal Time-domain Model (대신호 시영역 모델을 이용한 광섬유 격자 외부 공진 레이저 다이오드의 해석)

  • Kim, Jae-Seong;Chung, Youngchul;Cho, Ho Sung
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.227-232
    • /
    • 2012
  • A large-signal time-domain model is implemented to analyze an FG-LD (Fiber Grating Laser Diode) in which a reflective laser diode is hybrid-integrated with a fiber Bragg grating (FBG). When the length of the externally integrated resonator is 8 mm, in which the effective FBG length of 2.1 mm is included, a static frequency chirp of 0.44 GHz and a dynamic frequency chirp of 6.4 GHz are observed. In addition, it is also observed that the eye of the 10Gbps NRZ signal is well open. The FG-LD is expected to be a cost-effective solution for a 10Gbps-class single wavelength laser covering a span of 50 km range.

Hybrid Optimization Method for the Reconstruction of Apodized Chirped Fiber Bragg Gratings (무족화 첩 광섬유 격자 재구성을 위한 혼합 최적화 방법)

  • Youn, Jaesoon;Im, Kiegon
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.6
    • /
    • pp.203-211
    • /
    • 2016
  • We have studied the hybrid method for reconstructing apodized chirped fiber Bragg gratings, using both an analytic estimation of grating parameters and an optimization algorithm. The Hilbert transform of the reflection spectrum was utilized to estimate grating parameters, and then the layer-peeling algorithm was used to obtain refined parameter values by the differential-evolution optimization process. Calculations for a fiber Bragg grating with wavelength chirp rate 2 nm/cm were obtained with an accuracy of $6{\times}10^{-5}nm/cm$ for the chirp rate and $3{\times}10^{-9}nm/cm$ for the index modulation, with much improved calculation speed and high reliability.

Current Sensor for Bus Bar based on Fiber Bragg Gratings (광섬유 브래그 격자를 이용한 부스바용 전류 센서)

  • Kwang Taek Kim;Gunpyo Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.72-75
    • /
    • 2023
  • In this paper, a fiber-optic current sensor for a bus bar conductor based on the fiber Bragg grating (FBG) is proposed and demonstrated experimentally. The metal bus bar and a magnet are connected to each other through an FBG and the Bragg wavelength of the FBG is changed by magnetic force between the two connected devices. The experimental results showed that the Bragg wavelength of an FBG shifted by 650 pm as the 500 A direct current was applied to the bus bar.

Development of a Low Frequency Accelerometer using the Fiber Bragg Grating Sensor (Fiber Bragg Grating 센서를 이용한 저진동 가속도계 개발)

  • Pack, In-Seok;Kang, Han-Bin;Lee, Kye-Kwang;Lee, Seok-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1101-1109
    • /
    • 2012
  • Accelerometers play a key role in the structural assessment. However, the current electric type accelerometers have certain limitations to apply some structures such as heavy cabling labor, installed sea structure and sensitivity to electromagnetic fields. An optical Fiber Bragg Grating (FBG) accelerometer has many advantages over conventional electrical sensors since their immunity to electromagnetic interference and their capability to transmit signals over long distance without any additional amplifiers, and there is no corrosion from sea water. In this paper, we have developed a new FBG-based accelerometer. The accelerometer consists of two cantilevered type beams and a mass and two rollers. A bragg grating element is not directly glued to a cantilever to avoid possible non-uniform strain in the element. Instead, the bragg grating element will be attached to rotation part that rolled inducing vertical movement of the mass and support cantilever beams so that the bragg grating element is uniformly tensioned to achieve a constant strain distribution. After manufacturing, we will prove the performance and the natural frequency of the accelerometer through the experiment with a vibration shaker. The FBG-based accelerometer is developed for measuring the vibration not exceeding 50 Hz for the marine and civil structures.

A Novel Fiber Bragg Grating Sensing Interrogation Method Using Bidirectional Modulation of a Mach-Zehnder Electro-Optical Modulator (Mach-Zehnder 광변조기의 양방향 변조를 이용한 새로운 광섬유격자 센서 검출 방법)

  • Mao, Wankai;Pan, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.17-22
    • /
    • 2010
  • We have proposed and experimentally demonstrated a novel fiber Bragg grating (FBG) sensing interrogation method using bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). The proposed structure consists mainly of a broadband light source (BBS), FBG, MZ-EOM, chirped fiber Bragg grating (CFBG), and photodetector (PD). We have obtained the transfer functions of the proposed structure and calculated the time delay from the change in the free spectral range (FSR) for ten wavelengths over the frequency range of 505 MHz to 525 MHz. The results show that the time delay and the wavelength variation have a good linear relationship with a gradient of 12.9 ps/0.2 nm, which can be usefully applied to FBG strain or temperature sensors and other multiplexed sensor applications.

Simultaneous Measurement of Strain and Damage Signal in Composite Structures Using a Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 변형률 및 파손신호 동시 측정)

  • Koh, Jong-In;Bang, Hyung-Joon;Kim, Chun-Gon;Hong, Chang-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.43-50
    • /
    • 2004
  • For the simultaneous measurement of strain and damage signal a fiber Bragg grating sensor system with a dual demodulator was proposed. The dual demodulator is composed of a demodulator using a tunable Fabry-Perot filter measuring the low-frequency signal with large magnitude such as strain and the other using a passive Mach-Zehnder interferometer detecting the high-frequency signal with small amplitude such as impact or damage signal. Using the proposed fiber Bragg grating sensor system, both the strain and damage signals of a cross-ply laminated composite beam under tensile loading were simultaneously measured. The strain and damage signals detected by single fiber Bragg grating sensor showed that sudden strain shifts were accompanied with vibration at a maximum frequency of several hundreds of kilohertz at the instant of matrix crack propagation in the 90 degree layer in composite beam.

Performance Evaluation of A Tunable Dispersion Compensator based on Strain-Chirped Fiber Bragg Grating in a 40 Gb/s Transmission Link

  • Kim, Chul-Han;Bae, Jun-Key;Lee, Kwan-Il;Lee, Sang-Bae
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.244-248
    • /
    • 2008
  • We have evaluated the performance of strain-chirped fiber Bragg grating (FBG) based tunable dispersion compensator in a 40 Gb/s transmission link. In our proposed compensator, the value of dispersion could be changed from -353 ps/nm to -962 ps/nm by adjusting the rotation angle of the metal beam on which the FBG was mounted. In order to evaluate the effect of ripples in reflectivity and variations in passband of the FBG based dispersion compensator, transmission performance has been measured with our tunable dispersion compensator. Error-free transmission of a 40 Gb/s non-return-to-zero (NRZ) signal over conventional single-mode fiber (SMF) was achieved.

Dispersion Compensation in the Optical Fiber Transmission system using the Fiber Bragg Grating (FBG를 이용한 광 파이버 분산 보상에 관한 연구)

  • 신희성;홍성철;손용환;이종윤;이창원;정진호
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.81-84
    • /
    • 2001
  • We propose the cascade FBG(Fiber Bragg Grating)s to compensate the dispersion, discuss the dispersion characteristics of such cascaded FBGs, compare with the single FBG dispersion compensator. For these, we theoretically consider the sencond- and third-order group-velocity dispersion(GVD) in the single fiber grating using plane wave solution and the coupled mode equation. We also theoretically find the group-velocity dispersion in the cascaded fiber gratings from the results in the single fiber grating and present the optimum disign data of the cascaded FBGs dispersion compensator in the N-channel WDM system through the numerical simulation.

  • PDF

The Measurement of Concrete Deformations at Early Age using Fiber-Optic Bragg Grating Sensors (광섬유 GRATING SENSOR를 이용한 초기재령 콘크리트의 변형 측정)

  • 김지상;이상배;김남식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1238-1241
    • /
    • 2000
  • The deformations of concrete specimens were measured at early at early ages, in order to verify the applicability of FBG(Fiber Bragg Grating) sensors. The FBG sensors were directly buried at various locations in the beam-type RC specimens at the time of fabrication. In this experiment, the changes of strains in concrete at early age were successfully measured as the movement in wavelength of light signals. The FBG sensors may be a very effective tool to investigate the mechanical/thermal behavior inside of concrete structures.

  • PDF