DOI QR코드

DOI QR Code

Hybrid Optimization Method for the Reconstruction of Apodized Chirped Fiber Bragg Gratings

무족화 첩 광섬유 격자 재구성을 위한 혼합 최적화 방법

  • Youn, Jaesoon (Department of Physics, Chonnam National University) ;
  • Im, Kiegon (Department of Physics, Chonnam National University)
  • Received : 2016.09.27
  • Accepted : 2016.11.10
  • Published : 2016.12.25

Abstract

We have studied the hybrid method for reconstructing apodized chirped fiber Bragg gratings, using both an analytic estimation of grating parameters and an optimization algorithm. The Hilbert transform of the reflection spectrum was utilized to estimate grating parameters, and then the layer-peeling algorithm was used to obtain refined parameter values by the differential-evolution optimization process. Calculations for a fiber Bragg grating with wavelength chirp rate 2 nm/cm were obtained with an accuracy of $6{\times}10^{-5}nm/cm$ for the chirp rate and $3{\times}10^{-9}nm/cm$ for the index modulation, with much improved calculation speed and high reliability.

광섬유 격자의 반사스펙트럼을 분석하여 무족화 첩 광섬유 격자를 재구성하는 혼합 최적화 방법을 제안한다. 반사 스펙트럼의 힐버트 변환을 사용하여 설계 변수들의 추정값을 결정하고 층분리 알고리즘을 활용한 차분진화 최적화를 통하여 격자의 설계변수들을 최종 확정하였다. 특성 격자 주기 변화율 2 nm/cm인 무족화 첩 격자에 대한 계산 결과는 격자주기 변화율에 대해 $6{\times}10^{-5}nm/cm$, 굴절률 변조에 대해 $3{\times}10^{-9}$의 정확도로 설계 변수를 재구성할 수 있었으며 종래의 최적화 방법에 비하여 신속성과 신뢰성을 개선할 수 있음을 확인하였다.

Keywords

References

  1. J. Skaar and O. H. Waagaard, "Design and characterization of finite-length fiber gratings," IEEE J. of Quantum. Electron., 39, 1238-1249 (2003). https://doi.org/10.1109/JQE.2003.817581
  2. O. H. Waagaard, "Spatial characterization of strong fiber Bragg gratings using thermal chirp and optical-frequencydomain reflectometry," J. of Lightwave Technol., 23, 909-914 (2005). https://doi.org/10.1109/JLT.2004.838868
  3. H. Kogelnik, "Filter response of nonuniform almost-periodic structures," Bell Sys. Tech. J., 55, 109-126 (1976). https://doi.org/10.1002/j.1538-7305.1976.tb02062.x
  4. G. H. Song and S. Y. Shin, "Design of corrugated waveguide filters by the Gel'fand-Levitan-Marchenko inverse-scattering method," J. Opt. Soc. Amer. A2, 1905-1915 (1985). https://doi.org/10.1364/JOSAA.2.001905
  5. R. Feced, M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron., 35, 1105-1115 (1999). https://doi.org/10.1109/3.777209
  6. A. Carballar and M. A. Muriel, "Phase reconstruction from reflectivity in fiber Bragg gratings," J. of Lightwave Technol., 15, 1314-1322 (1997). https://doi.org/10.1109/50.618330
  7. X. Chapeleau, D. Leduc, C. Lupi, F. L. Gejo, M. Douay, R. Le Ny, and C. Boisrobert, "Local characterization of fiber-Bragg gratings through combined use of low-coherence interferometry and a layer-peeling algorithm," Appl. Opt., 45, 728-735 (2006). https://doi.org/10.1364/AO.45.000728
  8. D. Leduc, X. Chapeleau, C. Lupi, F. L. Gejo, M Douay, R. Le Ny, and C. Boisrobert, "Experimental synthesis of fibre Bragg gratings index profiles: comparison of two inverse scattering algorithms," Meas. Sci. Technol., 18, 12-18 (2007). https://doi.org/10.1088/0957-0233/18/1/002
  9. J. Skaar and K. M. Risvik, "A genetic algorithm for the inverse problem in synthesis of fiber gratings," J. Lightwave Technol., 16, 1928-1932 (1998). https://doi.org/10.1109/50.721082
  10. P. Dong, J. Azana, and A. G. Kirk, "Synthesis of fiber Bragg grating parameters from reflectivity by means of a simulated annealing algorithm," Opt. Commun., 228, 303-308 (2003). https://doi.org/10.1016/j.optcom.2003.10.005
  11. C. Z. Shi, N. Zeng, M. Zhang, Y. B. Liao and S. R. Lai, "Non-minimum phase reconstruction from amplitude data in fiber Bragg gratings using an adaptive simulated annealing algorithm," Optics & Laser Technol., 36, 259-264 (2004). https://doi.org/10.1016/j.optlastec.2003.09.006
  12. F. Lhomme, C. Caucheteur, K. Chah, M. Blondel, and P. megret, "Synthesis of fiber Bragg grating parameters from experimental reflectivity: a simplex approach and its application to the determination of temperature-dependent properties," Appl. Opt., 44, 493-497 (2005). https://doi.org/10.1364/AO.44.000493
  13. S. Baskar, R. T. Zheng, A. Alphones, N. Q. Ngo, and P. N. Suganthan, "Particle swarm optimization for the design of low-dispersion fiber Bragg gratings," IEEE Photon. Technol. Lett., 17, 615-617 (2005). https://doi.org/10.1109/LPT.2004.840924
  14. R. T. Zheng, N. Q. Ngo,P. Shum, S. C. Tjin, and L. N. Binh, "A staged continuous tabu search algorithm for the global optimization and its applications to the design of fiber Bragg gratings," Comp. Optim. Appl., 30, 319-335 (2005). https://doi.org/10.1007/s10589-005-4563-9
  15. R. T. Zheng, N. Q. Ngo, L. N. Binh, S. C. Tjin, and P. Shum, "Optimization technique for simple reconstruction of the index modulation profile of symmetric fiber Bragg gratings from their reflective spectrum," Opt. Engineering, 45, 014403 (2006). https://doi.org/10.1117/1.2159408
  16. N. Q. Ngo, R. T. Zheng, J. H. Ng, S. C. Tjin, and L. N. Binh, "Optimization of fiber Bragg gratings using a hybrid optimization algorithm," J. of Lightwave Technol., 25, 799-802 (2007). https://doi.org/10.1109/JLT.2006.889703
  17. D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Marti, "Design of apodized linearly chirped fiber gratings for dispersion," J. of Lightwave Technol., 14, 2581-2588 (1996). https://doi.org/10.1109/50.548158
  18. J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. of Quantum. Electron., 37, 165-173 (2001). https://doi.org/10.1109/3.903065
  19. Z. Huang, C. Wang, and M. Ma, "A robust archived differential evolution algorithm for global optimization problems," J. of Computers, 4, 160-167 (2009).
  20. R. Storn and K. Price, "Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces," J. of Global Optimization, 11, 341-359 (1997). https://doi.org/10.1023/A:1008202821328