Browse > Article
http://dx.doi.org/10.3807/KJOP.2016.27.6.203

Hybrid Optimization Method for the Reconstruction of Apodized Chirped Fiber Bragg Gratings  

Youn, Jaesoon (Department of Physics, Chonnam National University)
Im, Kiegon (Department of Physics, Chonnam National University)
Publication Information
Korean Journal of Optics and Photonics / v.27, no.6, 2016 , pp. 203-211 More about this Journal
Abstract
We have studied the hybrid method for reconstructing apodized chirped fiber Bragg gratings, using both an analytic estimation of grating parameters and an optimization algorithm. The Hilbert transform of the reflection spectrum was utilized to estimate grating parameters, and then the layer-peeling algorithm was used to obtain refined parameter values by the differential-evolution optimization process. Calculations for a fiber Bragg grating with wavelength chirp rate 2 nm/cm were obtained with an accuracy of $6{\times}10^{-5}nm/cm$ for the chirp rate and $3{\times}10^{-9}nm/cm$ for the index modulation, with much improved calculation speed and high reliability.
Keywords
Apodization; Linear chirp; Fiber Bragg Grating Reconstruction; Differential Evolution Optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Skaar and O. H. Waagaard, "Design and characterization of finite-length fiber gratings," IEEE J. of Quantum. Electron., 39, 1238-1249 (2003).   DOI
2 O. H. Waagaard, "Spatial characterization of strong fiber Bragg gratings using thermal chirp and optical-frequencydomain reflectometry," J. of Lightwave Technol., 23, 909-914 (2005).   DOI
3 H. Kogelnik, "Filter response of nonuniform almost-periodic structures," Bell Sys. Tech. J., 55, 109-126 (1976).   DOI
4 G. H. Song and S. Y. Shin, "Design of corrugated waveguide filters by the Gel'fand-Levitan-Marchenko inverse-scattering method," J. Opt. Soc. Amer. A2, 1905-1915 (1985).   DOI
5 R. Feced, M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron., 35, 1105-1115 (1999).   DOI
6 A. Carballar and M. A. Muriel, "Phase reconstruction from reflectivity in fiber Bragg gratings," J. of Lightwave Technol., 15, 1314-1322 (1997).   DOI
7 X. Chapeleau, D. Leduc, C. Lupi, F. L. Gejo, M. Douay, R. Le Ny, and C. Boisrobert, "Local characterization of fiber-Bragg gratings through combined use of low-coherence interferometry and a layer-peeling algorithm," Appl. Opt., 45, 728-735 (2006).   DOI
8 D. Leduc, X. Chapeleau, C. Lupi, F. L. Gejo, M Douay, R. Le Ny, and C. Boisrobert, "Experimental synthesis of fibre Bragg gratings index profiles: comparison of two inverse scattering algorithms," Meas. Sci. Technol., 18, 12-18 (2007).   DOI
9 J. Skaar and K. M. Risvik, "A genetic algorithm for the inverse problem in synthesis of fiber gratings," J. Lightwave Technol., 16, 1928-1932 (1998).   DOI
10 P. Dong, J. Azana, and A. G. Kirk, "Synthesis of fiber Bragg grating parameters from reflectivity by means of a simulated annealing algorithm," Opt. Commun., 228, 303-308 (2003).   DOI
11 C. Z. Shi, N. Zeng, M. Zhang, Y. B. Liao and S. R. Lai, "Non-minimum phase reconstruction from amplitude data in fiber Bragg gratings using an adaptive simulated annealing algorithm," Optics & Laser Technol., 36, 259-264 (2004).   DOI
12 R. T. Zheng, N. Q. Ngo, L. N. Binh, S. C. Tjin, and P. Shum, "Optimization technique for simple reconstruction of the index modulation profile of symmetric fiber Bragg gratings from their reflective spectrum," Opt. Engineering, 45, 014403 (2006).   DOI
13 F. Lhomme, C. Caucheteur, K. Chah, M. Blondel, and P. megret, "Synthesis of fiber Bragg grating parameters from experimental reflectivity: a simplex approach and its application to the determination of temperature-dependent properties," Appl. Opt., 44, 493-497 (2005).   DOI
14 S. Baskar, R. T. Zheng, A. Alphones, N. Q. Ngo, and P. N. Suganthan, "Particle swarm optimization for the design of low-dispersion fiber Bragg gratings," IEEE Photon. Technol. Lett., 17, 615-617 (2005).   DOI
15 R. T. Zheng, N. Q. Ngo,P. Shum, S. C. Tjin, and L. N. Binh, "A staged continuous tabu search algorithm for the global optimization and its applications to the design of fiber Bragg gratings," Comp. Optim. Appl., 30, 319-335 (2005).   DOI
16 N. Q. Ngo, R. T. Zheng, J. H. Ng, S. C. Tjin, and L. N. Binh, "Optimization of fiber Bragg gratings using a hybrid optimization algorithm," J. of Lightwave Technol., 25, 799-802 (2007).   DOI
17 D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Marti, "Design of apodized linearly chirped fiber gratings for dispersion," J. of Lightwave Technol., 14, 2581-2588 (1996).   DOI
18 J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. of Quantum. Electron., 37, 165-173 (2001).   DOI
19 Z. Huang, C. Wang, and M. Ma, "A robust archived differential evolution algorithm for global optimization problems," J. of Computers, 4, 160-167 (2009).
20 R. Storn and K. Price, "Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces," J. of Global Optimization, 11, 341-359 (1997).   DOI