• Title/Summary/Keyword: fetal brain

Search Result 81, Processing Time 0.023 seconds

The Relationship between Intracellular Protein Kinase C Concentration and Invasiveness in U-87 Malignant Glioma Cells (교모세포종 세포주 U-87에서 세포내 PKC 농도와 종양침습성과의 상관 관계)

  • Ji, Cheol;Cho, Kyung-Keun;Lee, Kyung Jin;Park, Sung Chan;Cho, Jung Ki;Kang, Joon Ki;Choi, Chang Rak
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.3
    • /
    • pp.263-271
    • /
    • 2001
  • Objective : Glioblastomas, the most common type of primary brain tumors, are highly invasive and cause massive tissue destruction at both the tumor invading edges and in areas that are not in direct contact with glioma cells. As a result, patients with high-grade gliomas are faced with a poor prognosis. Such grim statistics emphasize the need to better understand the mechanisms that underlie glioma invasion, as these may lead to the identification of novel targets in the therapy of high grade gliomas. Protein kinase C(PKC) is a family of serine/threonine kinases and an important signal transduction enzyme that conveys signals generated by ligand-receptor interaction at the cell surface to the nucleus. PKC appears to be critical in regulating many aspects of glioma biology. The purpose of this study was to assess accurately the role of PKC in the invasion regulation of human gliomas based on hypothesis that protein kinase C(PKC) is functional in the process of glial tumor cell invasion. Method : To test this hypothesis, U-87 malignant glioma cell line intracellular PKC levels were up and down regulated and their invasiveness was tested. Intracellular PKC level was characterized using PKC activity assays. Invasion assays including barrier migration and spheroid confrontation were used to study the relationship between PKC concentration and invasiveness. Result : The cell line which were treated by PKC inhibitor tamoxifen and hypericin exhibited decreased PKC activity and decreased invasive abilities dose dependently both in matrigel invasion assay and tumor spheroid fetal rat brain aggregates(FRBA) confrontation assay. However, the cell line that was treated by PKC activator 12-O-tetradecanylphorbol-13acetate(TPA) did not exhibit increases in either PKC activity or invasive ability. Conclusion : These studies suggest that PKC may be a useful molecular target for the chemotherapy of glioblastoma and other malignancies and that a therapeutic approach based on the ability of PKC inhibitors may be helpful in preventing invasion.

  • PDF

The Association of the 2nd to 4th Digit Ratio with the Age of Onset and Metabolic Factors in Korean Patients with Schizophrenia (한국 조현병 환자에서 검지-약지 길이비와 발병 연령 및 대사 장애와의 연관성)

  • Kim, Hong Rae;Lee, Jung Sun;Joo, Yeon Ho;Won, Seunghee;Ryu, Seunghyong;Hong, Kyung Sue;Kwon, Jun Soo;Lee, Seung Yeoun;Oh, Hong Seok;Choi, Joon Ho;Lee, Yu Sang
    • Korean Journal of Biological Psychiatry
    • /
    • v.24 no.3
    • /
    • pp.142-148
    • /
    • 2017
  • Objectives The ratio of second to fourth digit length (2D : 4D) could be a potential epigenetic marker of sexual dimorphism reflecting prenatal testosterone exposure. Testosterone is known to affect the development of the brain through an epigenetic mechanism. The purpose of this study was to investigate the effects of exposure to fetal testosterone on the metabolic syndrome based on 2D : 4D of schizophrenia patients and the relationship with the age of onset of schizophrenia. Methods A total of 214 schizophrenia patients participated in this study. The participant's physical and blood tests were performed according to the American National Cholesterol Education Program's Third Amendment of the Metabolic Syndrome Diagnostic Criteria, and the 2D : 4D was measured by the method designed by McFadden. Data were statistically analyzed by t-test, Pearson's correlation analysis and multiple regression model analysis. Results 2D : 4D was significantly higher in female than male in both hands, and there was a statistically significant negative correlation between 2D : 4D and the age of onset of schizophrenia in male. However, 2D : 4D did not show statistically significant correlation with metabolic factors. Conclusions Fetal testosterone suggests the possibility of affecting the age of onset of schizophrenia through the epigenetic mechanism, but there is no clear relationship with metabolic factors.

Identification of a New 5'-Noncoding Exon Region and Promoter Activity in Human N-Acetylglucosaminyltransferase III Gene

  • Kang, Bong-Seok;Kim, Yeon-Jeong;Shim, Jae-Kyoung;Song, Eun-Young;Park, Young-Guk;Lee, Young-Choon;Nam, Kyung-Soo;Kim, June-Ki;Lee, Tae-Kyun;Chung, Tae-Wha;Kim, Cheorl-Ho
    • BMB Reports
    • /
    • v.31 no.6
    • /
    • pp.578-584
    • /
    • 1998
  • In a previous paper (Kim et al., 1996a), the immediate 5' -flanking region and coding region of the human UDP-N -acetylglucosamine:-D-mannoside-1,4-Nacetylglucosaminyltransferase III (N-acetylglucosaminyitransferase- III; GnT-III) gene was reported, isolated and analyzed. Herein, we report on amplification of a new 5' -noncoding region of the GnT-III mRNA by single-strand ligation to single-stranded cDNA-PCR (5' -RACE PCR) using poly(A)+ RNA isolated from human fetal liver cells. A cDNA clone was obtained with 5' sequences (96 bp) that diverged seven nucleotides upstream from the ATG (+1) start codon. A concensus splice junction sequence, TCTCCCGCAG, was found immediately 5' to the position where the sequences of the cDNA diverged. The result suggested the presence of an intron in the 5' -noncoding region and that the cDNA was an incompletely reversetranscribed cDNA product derived from an mRNA containing a new noncoding exon. When mRNA expression of GnT-III in various human tissues and cancer cell lines was examined, Northern blot analysis indicated high expression levels of GnT-III in human fetal kidney and brain tissues, as well as for a number of leukemia and lymphoma cancer cell lines. Promoter activities of the 5' -flanking regions of exon 1 and the new noncoding region were measured in a human hepatoma cell line, HepG2, by luciferase assays. The 5'-flanking region of exon 1 was the most active, whilst that of exon 2 was inactive.

  • PDF

The Amount of Telomeric DNA and Telomerase Activity on Cattle Cells (소의 생리적 특성에따름 세포내 텔로미어 함량과 텔로머레이스 활성도 분석)

  • Choi, Duk-Soon;Cho, Chang-Yeon;Sohn, Sea-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.445-456
    • /
    • 2008
  • Telomeres consist of TTAGGG tandem repeated DNA sequences with specific proteins and locate at chromosome ends. Telomeres are essential for chromosome stability and are related with cell senescence, apoptosis and cancer. Telomerase is a ribonucleoprotein which has a template for the synthesis of telomeric DNA. This study was carried out to analyze the amount of telomeric DNA and telomerase activity in cattle cells. Analysis of the quantity of telomere in lymphocytes was done at different ages, sex and among Korean cattle and Holstein breeds. The telomerase activity was also analyzed in liver, brain, heart, kidney, and testis tissues of fetal calf and of 18 month old cattle. The amount of telomeres in lymphocytes and other tissue cells was analyzed by Quantitative-Fluorescence in situ Hybridization (Q-FISH) technique using a telomeric DNA probe. Telomerase activity was analyzed by Telomeric Repeat Amplification Protocol assay (TRAP). The amount of telomeric DNA on the lymphocytes during the whole life span was decreased along with age. Quantity of telomeres in Korean cattle was significantly higher than that in Holstein breed. The amount of telomeric DNA in males was significantly higher than that in females. Telomerase activity was up-regulated in most bovine tissues during fetal stage, but was down-regulated in most tissues at mature 18 month age except the testis cells. This study indicates that the amount of telomeres and telomerase activity of cells can be used as an age marker or/and a physiological marker of cattle.

Long-Term Effects of the DHA Supplementation on Physical and Brain Development in Full-Term Infants (장기간에 걸친 DHA 보충이 영아의 신체발육 및 두뇌발달에 미치는 영향)

  • 정현주
    • Journal of Nutrition and Health
    • /
    • v.31 no.8
    • /
    • pp.1295-1306
    • /
    • 1998
  • Recent research indicates that the n-3 fatty acid , docosahexaenoic acid(22 : 6n 3, DHA) plays an essential role in infant brain development . DHA is highly concentrated in brain and retinal tissues and accumulates during late fetal and early neonatal life. Diets deficient in DHA are associated with reduced levels of DHA in brain and retinal tissues. The purpose of this study is to investigate the long term effects of DHA supplementation on the growth and mental development of full-term infants. THirty four healty infants were recruited from those who were delivered at Kyung Hee Medical Center. The experimental groups were the breast milk+DHA(-) group who were fed human milk for 20 weeks after birth and thereafter were fed placebo formula for 28 weeks, the breast milk+DHA(+) group who were fed human milk for 20 weeks after birth and thereafter were fed DHA supplemented formula for 28 weeks, DHA(-) group who were fed placebo formula for 48 weeks, and DHA(+) group who were fed DHA supplemented formula for 48 weeks. The daily average intake of DHA for the breast milk+DHA(-) , breast milk+DHA(+), DHA(-) and DHA(+) groups were 39.1mg, 89.9mg, 17.7mg, and 160.224mg, respectively. The results showed that measurements of infant weight, length, head, and chest circumferncewere all in normal range and they were not influenced by the DHA supplements in their diets. There was a significant correlation between dietary DHA intake and erythrocyte DHA level. The results of flash visual evoke potential (VEP) test were not correlated with eerythrocyte DHA and dietary DHA levels at 48 weeks of age. No differences were found in Bayley mental and Psychomotor Development lndex scores among the four experimental groups at 48 weeks of age. Unlike the short-term effects there was no long-term effect of relatively small amounts of dietary DHA supplements on the scores for flash VEP and Bayley test, even thour호 there was an elevated DHA supplements on the scores for flash VEP and Bayley test, even through there was an elevated DHA content in the infants erythrocytes.

  • PDF

Biological Hazard of Electromagnetic Field Exposure: A Review (전자기파의 생체 위해성에 관한 소고)

  • Jung, Kyung-Ah;Gye, Myung-Chan
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.241-250
    • /
    • 2011
  • The safety of human exposure to an ever-increasing number and diversity of electromagnetic field (EMF) sources both at work and at home has clearly become a public health issue. To date many $in$ $vivo$ and $in$ $vitro$ studies revealed that EMF exposure can alter cellular metabolism, endocrine function, immune activity, reproductive function, and fetal development in animal system. The major parameters found to be altered in cells or individuals following EMF exposure include an increase of free radicals, DNA damage, cancer risk, developmental defect, and reproductive dysfunctions. Epidemiological studies reported EMF can increase life-threatening illnesses such as leukemia, brain cancer, amyotrophic lateral sclerosis, clinical depression, suicide, and Alzheimer's disease has been identified. These effects of EMF exposure differ according to duration of exposure, frequency of waves, and strength (energy) of EMF. In the present review, we briefly introduced the physical properties of EMF and summarized the effect of EMF on human and wildlife animals according to types of EMF, duration of exposure at cellular and organism levels.

Molecular Characterization and Expression Pattern of Gene IGFBP-5 in the Cashmere Goat (Capra hircus)

  • Wang, X.J.;Shi, J.J.;Yang, J.F.;Liang, Y.;Wang, Y.F.;Wu, M.L.;Li, S.Y.;Guo, X.D.;Wang, Z.G.;Liu, D.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.5
    • /
    • pp.606-612
    • /
    • 2012
  • Insulin-like growth factor-binding protein-5 (IGFBP-5) is one of the six members of IGFBP family, important for cell growth, apoptosis and other IGF-stimulated signaling pathways. In order to explore the significance of IGFBP-5 in cells of the Inner Mongolian Cashmere goat (Capra hircus), IGFBP-5 gene complementary DNA (cDNA) was amplified by reverse transcription polymerase chain reaction (RT-PCR) from the animal's fetal fibroblasts and tissue-specific expression analysis was performed by semi-quantitative RT-PCR. The gene is 816 base pairs (bp) in length and includes the complete open reading frame, encoding 271 amino acids (GenBank accession number JF720883). The full cDNA nucleotide sequence has a 99% identity with sheep, 98% with cattle and 95% with human. The amino acids sequence shares identity with 99%, 99% and 99%, respectively. The bioinformatics analysis showed that IGFBP-5 has an insulin growth factor-binding protein homologues (IB) domain and a thyroglobulin type-1 (TY) domain, four protein kinase C phosphorylation sites, five casein kinase II phosphorylation sites, three prenyl group binding sites (CaaX box). The IGFBP-5 gene was expressed in all the tested tissues including testis, brain, liver, lung, mammary gland, spleen, and kidney, suggesting that IGFBP-5 plays an important role in goat cells.

Reproductive Toxicity Evaluation of Pestban Insecticide Exposure in Male and Female Rats

  • Morgan, Ashraf M.;El-Aty, A.M. Abd
    • Toxicological Research
    • /
    • v.24 no.2
    • /
    • pp.137-150
    • /
    • 2008
  • Sexually mature male and female rats were orally intubated with the organophosphorus insecticide, Pestban at a daily dosage of 7.45 or 3.72 mg/kg bwt, equivalent to 1/20 and 1/40 $LD_{50}$, respectively. Male rats were exposed for 70 days, while the female rats were exposed for 14 days, premating, during mating and throughout the whole length of gestation and lactation periods till weaning. The results showed depressed acetylcholinesterase(AChE) activity in the brain of parents, fetuses and their placentae in a dose-dependent manner. The fertility was significantly reduced with increasing the dose in both treated groups, with more pronounced suppressive effects in the male treated group. The number of implantation sites and viable fetuses were significantly reduced in pregnant females of both treated groups. However, the number of resorptions, dead fetuses, and pre-and postimplantation losses were significantly increased. The incidence of resorptions was more pronounced in treated female compared to male group and was dose dependant. The behavioral responses as well as fetal survival and viability indices were altered in both treated groups during the lactation period. The incidence of these effects was more pronounced in the treated female group and occurred in a dose-related manner. The recorded morphological, visceral, and skeletal anomalies were significantly increased with increasing the dose in fetuses of both treated groups, with more pronounced effects on fetuses of treated females. In conclusion, the exposure of adult male and female rats to Pestban would cause adverse effects on fertility and reproduction.

Isolation of akabane virus and its molecular diagnosis by reverse transcription polymerase chain reaction (아까바네 바이러스의 분리 및 RT-PCR 진단법에 관한 연구)

  • Cho, Jae-jin;Lee, Chung-gil;Park, Bong-kyun;Chang, Chung-ho;Chung, Chung-won;Cho, In-soo;An, Soo-hwan
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.1
    • /
    • pp.42-48
    • /
    • 2000
  • Akabane disease is transmitted through mosquitoes in cattle, sheep and goats. It shows congenital abnormalities including encephalomyetitis, hydranencephaly, neurogenic arthrogryposis, and deformed neonatal calves. Akabane viruses, 93FMX and K-9 strain, were isolated from fetal matrix of aborted cow and blood of healthy cow, respectively. S gene sequences of 93FMX and K-9 showed 100% homology with that of OBE-1 strain isolated in Japan. Based upon our sequencing data, we synthesized specific primers for PCR diagnosis. Using these primers, we were able to amplify the S gene of Akabane virus not only from the culture fluid of Vero cells but also from the brain tissue of suckling mouse inoculated with, Akabane virus. These PCR products were confirmed by Southern blot hybridization. Not only the sensitivity of PCR test was high enough to detect the viruses of $10^{1.0}TCID_{50}/ml$, but also the time for diagnosis was significantly shorter than that of the virus isolation by tissue culture method. This method was also effective for the detection of Akabane virus in the cerebrum of fetus. RT-PCR method may be used for a useful diagnostic test of the clinical cases of Akabane disease.

  • PDF

Epigenetically Upregulated T-Type Calcium Channels Contribute to Abnormal Proliferation of Embryonic Neural Progenitor Cells Exposed to Valproic Acid

  • Kim, Ji-Woon;Oh, Hyun Ah;Kim, Sung Rae;Ko, Mee Jung;Seung, Hana;Lee, Sung Hoon;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.389-396
    • /
    • 2020
  • Valproic acid is a clinically used mood stabilizer and antiepileptic drug. Valproic acid has been suggested as a teratogen associated with the manifestation of neurodevelopmental disorders, such as fetal valproate syndrome and autism spectrum disorders, when taken during specific time window of pregnancy. Previous studies proposed that prenatal exposure to valproic acid induces abnormal proliferation and differentiation of neural progenitor cells, presumably by inhibiting histone deacetylase and releasing the condensed chromatin structure. Here, we found valproic acid up-regulates the transcription of T-type calcium channels by inhibiting histone deacetylase in neural progenitor cells. The pharmacological blockade of T-type calcium channels prevented the increased proliferation of neural progenitor cells induced by valproic acid. Differentiated neural cells from neural progenitor cells treated with valproic acid displayed increased levels of calcium influx in response to potassium chloride-induced depolarization. These results suggest that prenatal exposure to valproic acid up-regulates T-type calcium channels, which may contribute to increased proliferation of neural progenitor cells by inducing an abnormal calcium response and underlie the pathogenesis of neurodevelopmental disorders.