DOI QR코드

DOI QR Code

The Amount of Telomeric DNA and Telomerase Activity on Cattle Cells

소의 생리적 특성에따름 세포내 텔로미어 함량과 텔로머레이스 활성도 분석

  • Choi, Duk-Soon (Department of Animal Science and Biotechnology, Jinju National University) ;
  • Cho, Chang-Yeon (Animal Genetic Resources Station, National Institute of Animal Science) ;
  • Sohn, Sea-Hwan (Department of Animal Science and Biotechnology, Jinju National University)
  • 최덕순 (진주산업대학교 동물생명과학과) ;
  • 조창연 (축산과학원 가축유전자원시험장) ;
  • 손시환 (진주산업대학교 동물생명과학과)
  • Published : 2008.08.01

Abstract

Telomeres consist of TTAGGG tandem repeated DNA sequences with specific proteins and locate at chromosome ends. Telomeres are essential for chromosome stability and are related with cell senescence, apoptosis and cancer. Telomerase is a ribonucleoprotein which has a template for the synthesis of telomeric DNA. This study was carried out to analyze the amount of telomeric DNA and telomerase activity in cattle cells. Analysis of the quantity of telomere in lymphocytes was done at different ages, sex and among Korean cattle and Holstein breeds. The telomerase activity was also analyzed in liver, brain, heart, kidney, and testis tissues of fetal calf and of 18 month old cattle. The amount of telomeres in lymphocytes and other tissue cells was analyzed by Quantitative-Fluorescence in situ Hybridization (Q-FISH) technique using a telomeric DNA probe. Telomerase activity was analyzed by Telomeric Repeat Amplification Protocol assay (TRAP). The amount of telomeric DNA on the lymphocytes during the whole life span was decreased along with age. Quantity of telomeres in Korean cattle was significantly higher than that in Holstein breed. The amount of telomeric DNA in males was significantly higher than that in females. Telomerase activity was up-regulated in most bovine tissues during fetal stage, but was down-regulated in most tissues at mature 18 month age except the testis cells. This study indicates that the amount of telomeres and telomerase activity of cells can be used as an age marker or/and a physiological marker of cattle.

텔로미어란 염색체 말단부에 TTAGGG의 반복 염기서열과 특정 단백질로 구성되어 있는 것으로 핵 내 염색체의 안정성에 작용을 하며 세포의 노화, 사멸 및 암의 발생과 관련이 있다. 텔로머레이스는 텔로미어의 길이를 일정하게 유지하기 위한 직접적 효소로서 telomeric DNA 합성에 관여하는 ribonucleoprotein이다. 본 연구에서는 한우와 Holstein종 136두를 대상으로 백혈구 세포를 이용하여 연령 별, 품종 별, 성 별 텔로미어 함량을 분석하였다. 또한 동일 연령에서 혈액, 간, 뇌, 심장, 신장 및 생식선 조직들의 텔로미어 함량과 텔로머레이스 활성도도 비교 분석하였다. Telomeric DNA의 양적분석은 양적형광접합보인법(Q-FISH)을 이용하였고, 텔로머레이스 활성도의 분석은 TRAP방법을 이용하였다. 분석 결과, 소의 백혈구 세포들에 있어 개체의 연령이 증가함에 따라 텔로미어의 함유율이 점진적이며 유의적으로 감소되는 양상을 보였고, 한우가 Holstein에 비해 텔로미어 함유율이 높게 나타나 품종 간 유의적 차이가 있었으며, 성 간에도 수컷이 암컷에 비해 유의적으로 높은 텔로미어 함유율을 나타내었다. 반면 동일 연령의 간, 심장, 신장, 폐, 혈액 세포내 텔로미어의 함유율은 차이가 없는 것으로 나타났다. 텔로머레이스 활성도는 태아의 모든 조직에서 비교적 강한 활성을 보였지만, 성 성숙이 된 18개월령에서는 생식선 조직을 제외한 나머지 조직에서 텔로머레이스 활성도는 현저하게 떨어져 조직별 세포의 증식성 특이성과 텔로머레이스 활성도간에는 밀접한 연관성이 있는 것으로 나타났다. 이상의 결과로서 세포내 텔로미어 양적 분포 양상 및 텔로머레이스 활성도를 이용하여 개체의 연령 지표 또는 생리적 표지의 개발 가능성을 제시하고 자 한다.

Keywords

References

  1. Ahmed, A. and Tollefsbol, T. 2001. Telomeres and telomerase: basic science implications for aging. J. Am. Geriatr. Soc. 49(8):1105-1109 https://doi.org/10.1046/j.1532-5415.2001.49217.x
  2. Benetos, A., Okuda, K., Lajemi, M., Kimura, M., Thomas, F., Skurnick, J., Labat, C., Bean, K. and Aviv, A. 2001. Telomere length as an indicator of biological aging: The gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 37(2):381-385 https://doi.org/10.1161/01.HYP.37.2.381
  3. Betts, D. H. and King, W. A. 1999. Telomerase activity and telomere detection during early bovin development. Dev Gent 25(4):397-403 https://doi.org/10.1002/(SICI)1520-6408(1999)25:4<397::AID-DVG13>3.0.CO;2-J
  4. Betts, D. H., Bordingnon, V., Hill, J. R., Winger, Q., Westhusin, M. E., Smith, L. C. and King, W. A. 2001. Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc. Natl. Sci. USA 98:1077-1082
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Animal Biochem 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Cottliar, A. S. and Slavutsky, I. R. 2001. Telomeres and telomerase activity: their role in aging and in neoplastic development. Medicina 61:335-342
  7. de la Sena, C., Chowdhary, B. P. and Gustavsson, I. 1995. Localization of telomeric(TTAGGG)n sequences in chromosomes of some domestic animals by fluorescence in situ hybridization. Hereditas 123:269-274 https://doi.org/10.1111/j.1601-5223.1995.t01-1-00269.x
  8. Frenck, R. W. Jr., Blackburn, E. H. and Shannon, K. M. 1998. The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci USA 95(10):5607-5610
  9. Gan, Y., Engelke, K. J., Brown, C. A. and Au, J. L. 2001. Telomere amount and length assay. Pharma. Res. 18(12):1655-1659 https://doi.org/10.1023/A:1013306109801
  10. Greider, C. W. and Blackburn, E. H. 1985. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405-413 https://doi.org/10.1016/0092-8674(85)90170-9
  11. Hemann, M. T., Strong, M. A., Hao, L. Y. and Greider, C. W. 2001. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107:67-77 https://doi.org/10.1016/S0092-8674(01)00504-9
  12. Kim, N. W. and Wu, F. 1997. Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol(TRAP). Nucleic Acids Research 25(13):2595-2597 https://doi.org/10.1093/nar/25.13.2595
  13. King, W. A., Betts, D. H., Carter, R. F. and Hofstra, A. H. 1998. Telomeres and telomerase activity in bovine oocytes, embryos and fetuses. Theriogenology 49(1):182 https://doi.org/10.1016/S0093-691X(98)90535-0
  14. Lustig, A. J. 1999. Crisis intervention: the role of telomerase. Proc Natl Acad Sci USA 96(7):3339-3341
  15. Meeker, A. K. and Coffey, D. S. 1997. Telomerase: a promising marker of biological immortality of germ, stem, and cancer cells. A review. Biochemistry 62(11):1323-1331
  16. Miyashita, N., Shiga, K., Yonai, M., Kaneyama, K., Kobayashi, S., Kojima, T., Goto, Y., Kishi, M., Aso, H., Suzuki, T., Sakaguchi, M. and Nagai, T. 2002. Remarkable difference in telomere lengths among cloned cattle derived from different cell types. Biol. Reprod. 66:1649-1655 https://doi.org/10.1095/biolreprod66.6.1649
  17. Okuda, K., Bardeguez, A., Gardner, J. P., Rodriguez, P., Ganesh, V., Kimura, M., Skurnick, J., Awad, G. and Aviv, A. 2002. Telomere length in the newborn. Pediatr Res. 52(3):377-381 https://doi.org/10.1203/00006450-200209000-00012
  18. Pathak, S., Mutani, A. S., Furlong, C. L. and Sohn, S. H. 2002. Telomere dynamics, aneuploidy, stem cells and cancer. Int. J. Oncology 20(3):637-641
  19. Perner, S., Bruderlein, S., Hasel, C., Waibel, I., Holdenried, A., Ciloglu, N., Chopurian, H., Nielsen, K. V., Plesch, A., Hogel, J. and Moller, P. 2003. Quantifying quantitative telomere lengths of human individual chromosome arms by centromere-calibrated fluorescence in situ hybridization and digital imaging. American Journal of Pathology 163(5):1751-1756 https://doi.org/10.1016/S0002-9440(10)63534-1
  20. Robinson, M. O. 2000. Telomerase and cancer. Genet. Eng. 22:209-222
  21. Samper, E., Flores, J. M. and Blasco, M. A. 2001. Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc-/- mice with short telomeres. EMBO Rep. 2(9):800-807 https://doi.org/10.1093/embo-reports/kve174
  22. Shiels, P. G., Kind, A. J., Campbell, K. H., Waddington, D., Wilmut, I., Colman, A. and Schnieke, A. E. 1999. Analysis of telomere lengths in cloned sheep. Nature 399:316-317
  23. Slijepcevic, P. 1998. Telomere length regulation: a view from the individual chromosome perspective. Exp Cell Res. 244(1):268-274 https://doi.org/10.1006/excr.1998.4185
  24. Sohn, S. H., Multani, A. S., Gugnani, P. K. and Pathak, S. 2002. Telomere erosion-induced mitotic catastrophe in continuously grown Chinese hamster Don cells. Exptl. Cell Res. 279(2):271-276 https://doi.org/10.1006/excr.2002.5614
  25. Taylor, H. A. and Delany, M. E. 2000. Ontogeny of telomerase in chicken: impact of downregulation on pre- and postnatal telomere length in vivo. Dev Growth Differ. 42(6):613-621 https://doi.org/10.1046/j.1440-169x.2000.00540.x
  26. Tian, X. C., Xu, J. and Yang, X. 2000. Normal telomere lengths found in cloned cattle. Nat. Genet. 26:272-273 https://doi.org/10.1038/81559
  27. Ulaner, G. A. and Giudice, L. C. 1997. Developmental regulation of telomerase activity in human fetal tissues during gestation. Mol. Hum. Reprod. 3(9):769-773 https://doi.org/10.1093/molehr/3.9.769
  28. Venkatesan, R. and Price, C. 1998. Telomerase expression in chickens: Constitutive activity in somatic tissues and down-regulation in culture. Proc. Natl Acad. Sci. USA 95:14763-14768
  29. Weng, N. P. and Hodes, R. J. 2000. The role of telomerase exprerssion and telomere length maintenance in human and mouse. Journal of Clinical Immunology 20(4):257-267 https://doi.org/10.1023/A:1017223602293
  30. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. and Campbell, K. H. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385:810-813 https://doi.org/10.1038/385810a0
  31. Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W. and Shay, J. W. 1996. Telomerase activity in human germline and embryonic tissues and cells. Development Genetics 18(2):173-179 https://doi.org/10.1002/(SICI)1520-6408(1996)18:2<173::AID-DVG10>3.0.CO;2-3
  32. Xu, J. and Yang, X. 2000. Telomerase activity in bovine embryos during early development. Biol Reprod 63(4):1124-1128 https://doi.org/10.1095/biolreprod63.4.1124
  33. Xu, J. and Yang, X. 2001. Telomerase activity in early bovine embryos derived from parthenogenetic activation and nuclear transfer. Biol Reprod 64(3):770-774 https://doi.org/10.1095/biolreprod64.3.770
  34. Yamaguchi, Y., Nozawa, K., Savoysky, E., Hayakawa, N., Nimura, Y. and Yoshida, S. 1998. Change in telomerase activity of rat organs during growth and aging. Exptl. Cell Res. 242:120-127 https://doi.org/10.1006/excr.1998.4102
  35. 손시환, Multani, A. S., Pathak, S. 2004. 소, 돼지 염색체의 telomeric DNA 분포 양상. 동물자원학회지 46(4):547-554
  36. 정길선, 조은정, 최덕순, 이민정, 박철, 전익수, 손시환 2006. 한국재래닭의 주령별 각 조직의 텔로미어 양적분포 양상과 텔로머레이스 활성도 분석. 한국가금학회지 33(2):97-103
  37. 조은정, 최철환, 손시환. 2005. 닭의 발생 단계별 세포내 telomere의 양적 분포양상과 telomerase 활성도 분석. 한국동물자원과학회지 47(2):187-194 https://doi.org/10.5187/JAST.2005.47.2.187
  38. 조은정, 최철환, 전인수, 박철, 손시환. 2004. Telomere 양적 분석을 이용한 bio-marker 개발. 한국가금학회 제 21차 학술발표회 proceedings: 13-15

Cited by

  1. Telomere biology: Cancer firewall or aging clock? vol.78, pp.9, 2013, https://doi.org/10.1134/S0006297913090125
  2. Inheritance and Heritability of Telomere Length in Chicken vol.41, pp.3, 2014, https://doi.org/10.5536/KJPS.2014.41.3.217
  3. Cytogenetic tests for animal production: state of the art and perspectives vol.48, pp.5, 2017, https://doi.org/10.1111/age.12581