• Title/Summary/Keyword: fertilized soil nitrogen

Search Result 59, Processing Time 0.027 seconds

Study of Nutrient Uptake and Physiological Characteristics of Rice by $^{15}N$ and Purified Si Fertilization Level in a Transplanted Pot Experiment (중질소와 순수규산 시비수준이 벼의 양분흡수 및 생리적 특성에 미치는 영향)

  • Cho Young-Son;Jeon Won-Tae;Park Chang-Young;Park Ki-Do;Kang Ui-Gum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.408-419
    • /
    • 2006
  • A pot experiment was conducted for two years to evaluate the effects of purified Si fertilization combined with $^{15}N$ on the nutrient uptake, plant growth characteristics, and photosynthetic characteristics of rice in water melon cultivated soil. In 2002, plant height was positively affected at 25 DAT (Day After Transplanting) by Si fertilization in 100%N treatment. However, in 2003, plant height at 25 DAT was negatively affected by Si fertilization in low N level but it was reversed in high N level with initial increase of plant height. Tiller number per pot was positively affected by N and Si fertilization level, especially for high N fertilized treatment. Leaf color was positively affected by Si fertilizatlon in no N fertilized pots, however, Si was not effected in 50%N and 100%N fertilized treatments. N harvest index (NHI) increased with increased Si fertilization in no N plots, however it decreased with increasing of N fertilization level. Nitrogen use efficiency (NUE) decreased with increasing of fertilized N but Si fertilization increased NUE in 50%N plots, however, it was not different by the Si fertilization level in 100%N plots. In 50%N+200%Si plots, NUE was greatest with 130 and shoot N content was $16.2g-N/m^{2}$. N content ($g/m^{2}$) in rice plant increased with increasing Si fertilization in no N plots at panicle initiation stage, 50 and 100%N plots at heading stage and all N treatment at harvesting time. This was mostly more efficient in late growth stage than early growth stage. The concentration (%) of P and K increased with increasing N fertilization level at heading and harvesting but it was not significantly different by the Si fertilization treatment except a little decreasing with increasing Si fertilization level at heading. Potassium content was also not significantly related with N fertilization level except increasing with Si fertilization level at panicle initiation stage. Plant Ca content (%) decreased with increasing of Si fertilization at heading stage and Si fertilization increased Ca content at panicle initiation stage and heading stage and it increased with increasing of Si fertilization level. Photosynthetic activity was not directly related with Si fertilization amount, however, Fluorescent factors, Fv'/Fm' and PsII, were positively affected by Si fertilization level. In conclusion, N fertilization in Si 200% fertilized condition should be reduced by about 50% level of recommended N fertilization for rice cropping in green-house water-melon cultivated paddy field. However, improvement of Ps by Si fertilization could not be attributed to Ps activity in the same leaf area but because of increased total leaf area per pot improved fluorescent characteristics.

Nitrogen fixation, and growth characteristics of Three Legume cover crops in no-tillage paddy field

  • Cho, Young-Son
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.4
    • /
    • pp.308-315
    • /
    • 2003
  • A field experiment was conducted to investigate the performance of three legume species in a zero-tillage, non-fertilized rice field in a temperate zone. Before the experiment for 5 years, from 1995 to 1999, plant growth patterns of three legume species grown as over-wintering (October-May) cover crops on a paddy field were maintained to study N balance and $\textrm{N}_2$ fixation. Decrease in plant density accelerated from after winter to flowering from 1,090, 320, and 5 to 732, 232, and 6 plants $\textrm{m}^{-2}$ in Chinese milk vetch (CMV), white clover (WC), and hairy vetch (HV), respectively. Total dry weights of plants above-ground level were 0.05, 0.11, and 2.43 g $\textrm{plant}^{-1}$. in WC, CMV and HV respectively but steeply increased at ripening up to 0.77, 2.33, and 26 g $\textrm{plant}^{-1}$. The root dry weight of HV and CMV rapidly increased while in WC, root dry weight increased slightly towards flowering. The highest nodule numbers were recorded in CMV to April thereafter WC produced the highest. Nodule size was distributed within 7mm in CMV but it was larger in HV varying from 1 to 10mm. Shoot N (g $\textrm{m}^{-2}$) greatly increased from over-wintering to flowering in CMV, HV and WC and it ranged from 1.66, 0.5 and 1.92 to 12.6, 3.1 and 13.02 g $\textrm{m}^{-2}$, respectively. After wintering, the initial shoot N content (%) was more in CMV. Root N content (%) was constant or slightly decreased in HV and WC. Soil total N in the control plot (clean fallow) was the highest on Mar. 2 then decreased rapidly to flowering. Soil N content was constant in HV plots whereas it was low in WC plots for the entire growth period except just after winter. Maximum nitrogenase activities were 9, 37.8, and 131 mol $\textrm{C}_2\textrm{H}_4$ $\textrm{plant}^{-1}$ $\textrm{hour}^{-1}$. in CMV, HV, and WC, respectively. Nitrogenase activity showed a direct correlation with nodule number, size and fresh weight. As a cover crop preceding a rice crop, CMV is more suited to colder regions due to its earlier ripening characteristics. Hairy vetch and WC are recommended for regions with a mild winter and a long summer owing to their late ripening and great N fixation activity.

Analysis of Species Variety and Physiological Characteristics of Denitrifying Oligotrophic Bacteria Isolated from the Specific Environment in Korea (국내 특수 생태환경의 탈질 저영양 세균의 종 다양성 및 생리적 특성 분석)

  • Lee, Chang-Muk;Weon, Hang-Yeon;Kwon, Soon-Wo;Kang, Han-Chul;Koo, Bon-Sung;Yoon, Sang-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.210-217
    • /
    • 2011
  • In an effort to isolate novel bacteria for the bioremediation of over-fertilized soils, we identified 135 denitrifying cells out of 3,471 oligotrophic bacteria pools (3.9%) using a denitrification medium supplemented with potassium nitrate as the sole nitrogen source. Soil samples were taken from ecologically well-conserved areas, including a mountain swamp around the demilitarized zone (Yongneup), two ecoparks (Upo and the Mujechi bog), and ten representative islands around the Korean peninsula (Jejudo, Daecheongdo, Socheongdo, Baekryeongdo, Ulrungdo, Dokdo, Geomundo, Hongdo, Huksando and Yeonpyeongdo). All of the 135 bacteria produced nitrogen gas from the denitrification medium, and were proved to be nitrate reductase positive by API-BioLog tests. Phylogenetic analysis using 16S rDNA sequences revealed that the 135 bacteria consisted of 44 different genera. Along with the most prominent, Proteobacteria (87.4%), we identified denitrifying bacteria from Firmicutes (9.4%), Actinobacteria (2.4%), and Bacteroidetes (0.8%). Physiological analyses of the 44 representative denitrifying bacteria, under various pH levels, growth temperatures and salt stresses, revealed 12 favorable denitrifying strains for soil bioremediation.

Effects of Two Different Rhizobium Strains on Nodulation and Growth of Lucerne (Medicago sativa L.) in an Acid Soil (균계를 달리하는 근류균이 산성토양 조건에서 알팔파의 근류형성과 생장에 미치는 효과)

  • Choe, Z.R.;Kim, J.K.;Bin, Y.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.2
    • /
    • pp.38-48
    • /
    • 1980
  • To evaluate Rhizobium meliloti BALSAC, a strain selected from Canada as an acid tolerant one, and ordinary lucerne inoculant in acid condition, lucerne (Medicago sativa L. cv. Wairau) was inoculated and/or pelleted in the laboratory, and grown for two months in an acid soil (Lismore silt loam, pH 5.4) with three levels of lime in the, glasshouse. The results of controlled (noninoculated), nitrogen fertilized, laboratorial and commercial inoculated seeds were compared to give the following conclusions: 1. There was no significant difference in the top and root dry matter yields between two Rhizobium strains. However, Balsac inoculant showed higher single nodule dry matter weight and relatively higher number of larger nodules than the ordinary inoculant. 2. Lime application increased dry matter yields of plants and nodules, and the number of nodules per pot and the increase of nodules on the lateral roots in both inoculants. Lime application also caused an evenly distribution of nodules on the root by showing an increase of nodules mainly on the lateral roots. 3. Fertilizer nitrogen without inoculant slightly increased the nodulation percentage, the nodule dry matter weight per nodule and the relative proportion of larger nodules. 4. Commercially inoculated and pelleted seed showed less consistent results. 5. Relatively larger variations in measuring nodule characteristics was discussed and concluded that extreme cares should be given to reduce the variation.

  • PDF

Effect of Swine Liquid Manure on Soil Chemical Properties and Growth of Rice (Oryza sativa L.) (양돈분뇨 발효액비 시용이 토양 화학성과 벼 (Oryza sativa L.) 생육에 미치는 영향)

  • Lee, Kyu-Hoi;Yoo, Jae-Hong;Park, Eun-Ju;Jung, Yeong-In;Tipayno, S.C.;Shagol, C.C.;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.945-953
    • /
    • 2010
  • This study was conducted to evaluate the effect of swine liquid manure (SLM) on rice grown in Yeonggwang-gun in 2008. The treatments consisted of SLM and chemical fertilizer (CF) based on the recommended amount of nitrogen (11 kg N $10a^{-1}$). The Total N content of the SLM used was 2,881 mg $L^{-1}$. Plant height at the early stage of growth and tiller number were not significantly different between plots applied with swine liquid manure and those with chemical fertilizer in all areas. Plant height at the later stage of growth, lodging and yield were not significantly different between plots applied with swine liquid manure and those with chemical fertilizer in three areas (Baeksu, Gunnam, Beopseong). Plant height at the later stage of growth, as well as lodging were higher in SLM plots than in chemically fertilized plots in Yeonggwang and Yeomsan. However, grain yield was lower in SLM plots than in chemically fertilized plots in these areas. Soil organic matter content and exchangeable cations increased in the swine liquid manure applied plots. Moreover, heavy metal content did not increase in the plots treated with swine liquid manure. Further research to determine the suitable rate of swine liquid manure is needed to reduce lodging damage and to increase the yield and quality of rice.

Physiological and Ecological Characteristics of Indigenous Soybean Rhizobia Distributed in Korea -V. Effects of Co-inoculation of R. japonicum and A. lipoferum on the Effectiveness of Symbiotic Nitrogen Fixation with Soybean (우리 나라 토착대두근류균(土着大豆根瘤菌)의 분포상태(分布狀態)와 생리(生理) 및 생태학적(生態學的) 특성(特性) -제(第)V보(報) 대두근류균(大豆根瘤菌)과 협생질소고정균(協生窒素固定菌)과의 상호접종효과(相互接種效果))

  • Ryu, Jin-Chang;Suh, Jang-Sun;Lee, Sang-Kyu;Cho, Moo-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.3
    • /
    • pp.307-315
    • /
    • 1988
  • This experiment was conducted to find out the effects of fertilizer-N and co-inoculation of the Rhizobium japonicum and the Azospirillum lipoferum on nodulation, $N_2$-fixation, and growth of soybean under in situ conditions. The results obtained were summarized as follows: 1. The yield of soybean dry matter was significantly greater in the R. japonicum alone, and the mixed inoculation of R. japonicum and A. lipoferum than those of un-inoculation. But inoculum applied by different strains did not significant effect on plant growth. The effects of nitrogen applied on soybean dry matter were higher in the ammonium sulfate than potassium nitrate, and decreased with increasing rates of two forms of nitrogen applied regardless of nitrogen source. 2. Acetylene redution activity was more increased in a single inoculation of R. japonicum than those of the mixed inoculation of the R. japonicum and the A. lipoferum, in cases of Danyeup cultivar, regardless of the form of combined nitrogen used. 3. Nodule mass and total nitrogenase activity per plant showed the positively significant effect in the interrelationship between dry matter of soybean and some factors related to nitrogen fixation efficiency. 4. The highest symbiotic effect in Danyeup cultivar was obtained when a single R. japonicum 84 Dy-1 strain was inoculated and fertilized with 18 mM potassium nitrate.

  • PDF

Paddy Rice Growth Yield as Affedted by Incorporation of Green Barley and Chinese Milkvetch (자운영 및 보리 재배 혼입처리에 따른 벼의 생육과 수량)

  • Sohn, Bo-Kyoon;Cho, Ju-Sik;Lee, Do-Jin;Kim, Young-Ju;Jin, Seo-Young;Cha, Gyu-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.156-164
    • /
    • 2004
  • This study was conducted to evaluate the effect of the application of green manure in the form of either green barley and Chinese milkvetch in reducing the amounts of N fertilizers and conventional fertilizers needed for paddy rice. Prior to rice transplanting, the green barley and Chinese milkvetch as a green manure produced respectively $668kg\;10a^{-1}$ and 3,492kg\;$10a^{-1}$ in fresh shoot weight basis. Calculated nitrogen content from harvested green manures was 3.9 and $17.8kg\;10a^{-1}$, respectively. Plant height and tiller number of rice increased when two kinds of green manure incorporated into soil. Above mentioned parameters also increased with increasing amounts of N fertilizers at both ear formation and heading stage of rice. Rice grain number was not affected by green manures treatment but increased when N fertilizers were applied. Although rice panicle and grain number increased with green manure treatments and fertilizer applications, whereas the percentage of ripened grain decreased. Chinese milkvetch with additional N fertilizer applications increased brown rice yield from 1 to 5% compared to rice yields in plots where non-green manure with the conventional amount of fertilizer application was applied. Rice treated with Chinese milkvetch and 30% of the conventional N fertilizer rate yielded the same as rice fertilized conventionally. During the rice growing season, $NH_4-N$ content of paddy soil was higher in green manures treatment than non-green manure one. Average $NH_4-N$ content in paddy soil drastically decreased after heading stage below $5.7mg\;kg^{-1}$ in non-green manure treated plots. While on the other, $NH_4-N$ content in soil slowly decreased in plots those were treated with green manures at harvesting stage, average $NH_4-N$ content was still greater than $5.5mg\;kg^{-1}$. Nitrogen content of rice shoot and brown rice seed was higher in green manure treatment.

Effect of Banded Subsoil Fertilization on the Yields and N Utilization of Radish (Raphanus sativus L.) in Plastic Film Mulching Cultivation (무 재배시 질소이용률 및 수량에 미치는 토중시비 효과)

  • Yang, Chang-Hyu;Yoo, Chul-Hyun;Shin, Bok-Woo;Kang, Seung-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.398-403
    • /
    • 2005
  • To establish law-put fertilization technique and increase of fertilization efficiency during cultivation of plastic film mulching for plastic the improvement of soil properties, nutrition efficiency and yield by banded subsoil fertilization (BSF) using band spoty applicator was conducted at radish (Raphanus sativus L.) field in Honan Agricultural Research Institute from 1997 to 1998 for 2 years. These results were as follows. T-N, available $P_2O_5$ exchangeable Ca and K contents of soil were increased those of before experiment especially in BSF treatment. Also, the content of soil $NO_3-N$ was higher in BSF as fertilization amount is increasing than in CF (conventional fertilization). Uptake amounts of nitrogen fertilized were high in BSF during overall the growth period of plant and N utilization was high by $21.9{\sim}30.4%$ in BSF compared to in CF. The rate of fertilizer loss by rainfall was largely reduced, because all fertilizer applied was putted around the root zone. The total yields of fresh radish BSF treatments were more increased $13{\sim}37%$ than that of CF treatment.

Effects of Drought Stress and Nitrogen Fertilization on Growth and Physiological Characteristics of Pinus densiflora Seedlings Under Elevated Temperature and CO2 Concentration (대기 중 온도 및 CO2 농도 조절에 따른 건조 스트레스와 질소 시비가 소나무의 생장 및 생리적 특성에 미치는 영향)

  • Song, Wookyung;Lee, Bora;Cho, Nanghyun;Jung, Sungcheol;Kim, Eun-Sook;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.57-67
    • /
    • 2020
  • Pinus densiflora is the most widely distributed tree species in South Korea. Its ecological and socio-cultural attributes makes it one of the most important tree species in S. Korea. In recent times however, the distribution of P. densiflora has been affected by dieback. This phenomenon has largely been attributed to climate change. This study was conducted to investigate the responses of growth and physiology of P. densiflora to drought and nitrogen fertiliz ation according to the RCP 8.5 scenario. A Temperature Gradient Chamber (TGC) and CO2. Temperature Gradient Chamber (CTGC) were used to simulate climate change conditions. The treatments were established with temperature (control versus +3 and +5℃; aCeT) and CO2 (control: aCaT versus x1.6 and x2.2; eCeT), watering(control versus drought), fertilization(control versus fertilized). Net photosynthesis (Pn), stomatal conductance (gs), biomass and relative soil volumetric water content (VWC) were measured to examine physiological responses and growth. Relative soil VWC in aCeT significantly decreased after the onset of drought. Pn and gs in both aCeT and eCeT with fertiliz ation were high before drought but decreased rapidly after 7 days under drought because nitrogen fertilization effect did not last long. The fastest mortality was 46 days in aCeT and the longest survival was 56 days in eCeT after the onset of drought. Total and partial biomass (leaf, stem and root) in both aCeT and eCeT with fertiliz ation were significantly high, but significantly low in aCeT. The results of the study are helpful in addressing P. densiflora vulnerability to climate change by highlighting physiological responses related to carbon allocation under differing simulated environmental stressors.

Influence of N Forms to the Ionic Balance of Tobacco Plants (담배식물의 이온균형(均衡)에 미치는 형태별(形態別) 질소(窒素)의 영향)

  • Lee, Yun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.2
    • /
    • pp.139-145
    • /
    • 1986
  • In order to study the influence of nitrate reduction to ionic balance in tissue of tobacco plant, differneces in amounts of those cations and anions were determined and these balances were compared with contents of organic acids and activities of nitrate reductase, while they were fertilized with different nitrogen sources ($NO_3-N$, $NH_4-N$, $NO_3+NH_4-N$) in water culture. The results of studies are summerized as follows; 1. Total uptake of inorganic cations was the highest in nitrate-fed plants, whereas that of inorganic anions showed the highest level in the plants grown with the mixture ($NO_3+NH_4$). The amounts of inorganic cations and anions were comparable in two treatments containing $NH_4-N$, but in plants treated with nitrate only had much higher level of inorganic cations than others. 2. Deficiency in the amount of inorganic anions in nitrate-fed plants was balanced with organic acids, dominantly with malic acid among them. But another two $NH_4-N$ fed plant sustained equilibrium between inorganic cations and anions. 3. Reduction of nitrate was raised in tissues of nitrate-fed plants. By the results of nitrate reduction, cations maintained equilibrium with nitrate ion were let loose. The replacement of inorganic anions with organic anions could be a compensation process for the loss of uptaken nitrate ions which must be reduced to be incorporated into organic N compounds.

  • PDF