• 제목/요약/키워드: ferro-alloy

검색결과 12건 처리시간 0.02초

페로 소재로 만들어진 고크롬계 내마모재의 미세조직과 경도 (Microstructure and Hardness of High Cr Wear Resistance Materials Made by Ferro Materials)

  • 김광수
    • 한국재료학회지
    • /
    • 제16권1호
    • /
    • pp.5-10
    • /
    • 2006
  • This study was performed to investigate the characteristics of the synthesized powder type ferro materials for wear resistant hardfacing. The powder type filler materials were made from ferro Cr and ferro Mn. Those ferro materials are two types, such as high carbon and low carbon contained. The alloy composed of high carbon ferro Cr and high carbon ferro Mn exhibited the best properties in terms of microstructure and hardeness for wear characteristics. Further, the alloys produced by the synthesized powders and wire type filler, were also evaluated in terms of microstructures and microhardness measurements. The results indicated that the synthesized powders displayed reasonable properties compared to commercial grade materials. The hardness value of the alloy produced by the synthesized powders were approached about 90% of the commercial grade's hardness. The hardness values of the alloys closely depended on the amount of the dissolution of the ferro Cr, the hardness and the volume of the eutectic phase.

타이타늄 스크랩을 활용한 페로 -타이타늄 전처리 공정 적용 모합금 주조 (Ingot Casting with Ferro-Titanium Pretreatment Process using Ti Scrap)

  • 이초롱;박종범;강태웅;민태식;전수혁;노윤경
    • 한국주조공학회지
    • /
    • 제41권2호
    • /
    • pp.139-143
    • /
    • 2021
  • 타이타늄 합금 중 페로-타이타늄은 철강 업계에서 철강과 스테인리스강을 생산하는데 사용되는 주요 첨가물이다. 본 연구에서는 고품질의 페로-타이타늄 합금을 주조하기 위해 경제적인 면을 고려한 저비용 타이타늄 스크랩을 활용하고자 하였다. 먼저 재활용 타이타늄 스크랩의 표면에 형성되어 있는 절삭유 및 불순물을 제거하기 위한 최적의 전처리 공정을 연구하였다. 일반적인 세척 방법인 산이나 유기용제는 세척이 용이하나 환경적으로 문제가 되므로 친환경적인 방법을 고안하여 적용하고자 하였다. 또한, 타이타늄 스크랩을 활용하여 고품질의 페로-타이타늄 잉곳을 제조하고 성분 분석을 통해 불순물과 특성을 상용 소재 규격과 비교 분석하였다.

$Mn_3O_4$ 분진의 Al 테르밋 반응용 Al 합금분말의 특성 (The Properties of Aluminium Alloy Powder for Aluminothermy Process with $Mn_3O_4$ Waste Dust)

  • 김윤채;송영준;박영구
    • 한국응용과학기술학회지
    • /
    • 제30권1호
    • /
    • pp.71-77
    • /
    • 2013
  • 알루미늄 테르밋 반응의 환원제로서 알루미늄 분말은 200 메쉬 이하의 미분이 필요하나, 알루미늄의 높은 인성과 분말 제조비 때문에 경제적으로 용이하지 않다. 그러므로 $Mn_3O_4$ 분진 환원용 알루미늄 미분의 제조 코스트를 낮추기 위해, 알루미늄 합금분말의 제특성이 검토되었다. 망간을 다량 함유한 알루미늄 합금괴는 취성이 큰 금속간 화합물을 함유하고 있기 때문에 쉽게 파쇄할 수 있다. 또 망간은 망간 합금철의 주성분이다. Al-15%Mn 합금분말을 기계적 파쇄법으로 저렴하게 제조할 수 있다. Al 분말 대신에 Al-15%Mn 합금분말을 사용한 테르밋 반응 결과는 환원제로 순 알루미늄 분말을 사용한 경우와 같이 고순도 망간 합금철을 얻을 수 있었다. Al-15%Mn 합금분말를 이용한 $Mn_3O_4$ 분진의 망간 회수율은 알루미늄 분말을 이용한 경우의 약 65% 보다 높은 약 70%의 높은 수준을 보였으며, 이는 비산이 적은 것에 기인한다.

$Mn_3O_4$ 분진으로부터 고순도 훼로망간 제조에 관한 연구 (A Study on Making of High-Purity Ferro-manganese from $Mn_3O_4$ Waste Dust)

  • 김윤채;송영준;박영구
    • 한국응용과학기술학회지
    • /
    • 제28권2호
    • /
    • pp.135-139
    • /
    • 2011
  • In order to make high-purity ferro-manganese from $Mn_3O_4$ waste dust, the application of aluminothermite process to the reduction of the waste dust was investigated. The mixture from $Mn_3O_4$ dust as metallic source and Al metal powder as the reductant ignited, and reduced with an extremely intense exothermic reaction. The rapid propagation of the aluminothermite reaction occurred spontaneously and stably by ignition of the mixture. The Manganese having some alloy elements emerged as liquids due to the high temperatures reached up to about $2,500^{\circ}C$ and separated from the liquid by their differences of specific gravity. The result of thermite reaction showed the fact that can be obtained high purity ferro-manganese which have over about 90% of manganese content and lower impurities such as C, P, S than those of KS D3712 specification. The recovery of manganese from $Mn_3O_4$ dust was lower level of about 65% than about 75% from manganese ore by electric furnace process, that is due to spatter loss because of its extremely intense thermite reaction. But it will be improved by the process designed to provide CaO as the cooler or to use the Al metal powder having larger particle size distribution.

Electron Transport and Magneto-optical Properties of Magnetic Shape-memory $Ni_2NnGa$ Alloy

  • Lee, Y.P.;Lee, S.J.;Kim, C.O.;Jin, X.S.;Zhou, Y.;Kudryavtsev, Y.V.;Rhee, J.Y.
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제6권1호
    • /
    • pp.12-15
    • /
    • 2002
  • The physical properties, including magneto-optical and transport ones, of Ni$_2$MnG$_2$ alloy in the martensitic and austenitic states were investigated. The dependence of the temperature coefficient of resistivity on temperature shows kinks at the structural and ferro-para magnetic transitions. Electron-magnon and electron-phonon scattering are analyzed to be the dominant scattering mechanisms of the Ni$_2$MnG$_2$ alloy in the martensitic and austenitic states, respectively. The experimental real parts of the off-diagonal components of the dielectric function present two sharp peaks, one at 1.9 eV and the other at 3.2 eV, and a broad shoulder at 3.5 eV, all are identified by the band-structure calculations. These peak positions are coincident with those in the corresponding optical-conductivity spectrum, which is thought to originate from the single-spin state in Ni$_2$MnG$_2$ alloy.

  • PDF

합금철 제조공장 출탕 노동자의 유해인자 노출 (A Study on Exposure to Hazard Factors in Furnace Worker in Ferro-Alloy Manufacturer Factory)

  • 차원석;김부욱;최병순
    • 한국산업보건학회지
    • /
    • 제27권4호
    • /
    • pp.302-312
    • /
    • 2017
  • Objectives: In this study, an evaluation of the working environment of furnace workers was performed and the work-relatedness of the occupational diseases were examined Methods: In this study, two electric furnaces at a single casting business site producing manganese-based iron alloy were selected, and occupational exposures to hazardous substances were evaluated for furnace workers and furnace worker assistants. Results: As a result, total dust concentration were $0.407{\sim}3.001mg/m^3$ and respirable dust concentration were $0.196{\sim}0.584mg/m^3$. The highest concentration of crystalline silica was $0.079mg/m^3$ In the case of Masato and Sosuckwhoi crystalline silica, they contained 90.85% and 4.17% respectively. Manganese concentration was the highest at a $0.205mg/m^3$ maximum. The average of black carbon is $11.56{\mu}g/m^3$ and the maximum concentration is $604.23{\mu}g/m^3$. PAHs concentration was the highest at a $78.301{\mu}g/m^3$ of naphthalene. The concentration of carbon monoxide was 18.82 ppm(total average 3.89 ppm) during pouring, and the maximum is 131 ppm. The formaldehyde concentration was 0.003 to 0.007 ppm. Conclusions: It seems that conditions in the past were worse, since casting has recently been performed only twice per day for about 20 minutes, reducing the amount of pouring, and local exhaust systems have been installed one-by-one. In addition, it was judged that the past exposure levels were higher considering the points measured on the back-side due to the risk of damage to the individual samples. It was found that operators could be exposed to high concentrations of crystalline silica, and that they were also exposed to high concentrations of metal(fume) and carbon monoxide during pouring. Therefore, there is a risk that occupational diseases such as lung cancer and COPD may occur with long-term work in such a process.

실리콘 및 탄소 복합 열환원 반응을 이용한 페로실리크롬 합금철의 제조 (Production of Fe-Si-Cr Ferro Alloy by Using Mixed Silicothermic and Carbothermic Reduction)

  • 김종호;정은진;이고기;정우광;유선준;장영철
    • 한국재료학회지
    • /
    • 제27권5호
    • /
    • pp.263-269
    • /
    • 2017
  • Fe-Si-Cr ferroalloy is predominantly produced by carbothermic reduction. In this study, silicothermic and carbothermic mixed reduction of chromite ore to produce Fe-Si-Cr alloy is suggested. As reductants, silicon and silicon carbide are evaluated by thermochemical calculations, which prove that silicon carbide can be applied as a raw material. Considering the critical temperature of the change from the carbide to the metallic form of chromium, thereduction experiments were carried out. In these high temperature reactions, silicon and silicon carbide act as effective reductants to produce Fe-Si-Cr ferroalloy. However, at temperatures lower than the critical temperature, silicon carbide shows a slow reaction rate for reducing chromite ore. For the proper implementation of a commercial process that uses silicon carbide reductants, the operation temperature should be kept above the critical temperature. Using equilibrium calculations for chromite ore reduction with silicon and silicon carbide, the compositions of reacted metal and slag were successfully predicted. Therefore, the mass balance of the silicothermic and carbothermic mixed reduction of chromite ore can be proposed based on the calculations and the experimental results.

타이타늄의 리사이클링 기술 현황 (Current Status of Titanium Recycling Technology)

  • 손호상
    • 자원리싸이클링
    • /
    • 제30권1호
    • /
    • pp.26-34
    • /
    • 2021
  • 타이타늄은 구조용 금속 중 알루미늄, 철, 마그네슘에 이어서 네 번째로 풍부한 금속이지만, 금속으로의 제련이 어려워 희소금속으로 분류되고 있다. 특히 타이타늄의 제련공정은 에너지 다소비형 공정이다. 타이타늄 스크랩으로 잉곳을 제조하면 에너지 소비량과 CO2 발생량을 약 95 %까지 절감할 수 있다. 그러나 스크랩 중의 철분과 산소 등의 불순물을 제거하기 어려워 리사이클링 되는 양은 한정되어 있다. 일반적으로 고품위 타이타늄 스크랩은 순타이타늄 스펀지의 재용해 공정에 투입하여 희석하고, 저품위 스크랩은 페로타이타늄 제조용 원료로 사용되고 있다. 본 논문에서는 이러한 타이타늄의 리사이클링 기술을 이해하기 위해 타아타늄의 제련기술과 리사이클링 기술에 대하여 고찰하였다.

Mn-Al계 합금의 열처리에 따른 미세조직 변화와 지기적 특성(제1보) -Mn-Al-Cu 합금을 중심으로- (The Magnetic Characteristics and Microstructure of Mn-A1 System Alloys(1st Report) -Focused on the Mn-A1 Alloys-)

  • 방만규;양현수;곽창섭
    • 한국정밀공학회지
    • /
    • 제5권4호
    • /
    • pp.48-58
    • /
    • 1988
  • This study was undertaken to observe the formation behavior of ferro- magnetic phase in Mn-Al-Cu Alloys. The alloy selected for this investigation was 70% Mn-29% Al-1% Cu. This pre-allyed pig was prepared to the cylinderical castings using an Induction furnace after homogenizing at $1100^{\circ}C$ for 2hr, the specimens were cooled by cooling methods. Subwequent isothermal heat treatments were followed at $550^{\circ}C$ for various periods of time at predetermined(1-1000min). The formation behavior of ferromagnetic phase was investigated by measurements of magnetic properties of the specimens at each stage of heat treatment, and optical microscopic esamination and X-Ray diffraction analyses were also employed. By this basic experimental results, the conclusions are as follows 1) In order to obtain much amount of ferromagnetic phase, the optimum average cooling rate was about 7.35-$16.4^{\circ}C$/sec($1100^{\circ}C$-$600^{\circ}C$). 2) We verified the decomposition of {\tau} phase to {\beta} -Mn and {\gamma} , as the specimens were homogenized at $1100^{\circ}C$ for 12hr, then heat-treased at $550^{\circ}C$ for 1-1000min. 3) A condition of optimum heat treatments in Mn-Al-Cu permanent mag-netic alloys showed that after homogenizing at $1100^{\circ}C$ for 2hr, the speciments were cooled in air or furnace(A) and subsequent heat treatments at $550^{\circ}C$ for 1-30min. The maximum magnetic properties were measured as follows: Air cooling; Br=1200(Gause), bHc=100(oe), (BH)max=0.07(MGOe) Furnace cooling(A);Br=950(Gauss), bhe=80(Oe), (BH)max=0.05(MGOe)

  • PDF