• Title/Summary/Keyword: ferritic

Search Result 307, Processing Time 0.021 seconds

Effect of Powder Synthesis Method on the Microstructure of Oxide Dispersion Strengthened Fe-Cr-Al Based Alloys (Fe-Cr-Al 기 산화물 분산강화 합금의 미세조직에 미치는 분말제조 공정 영향)

  • Park, Sung Hyun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.507-511
    • /
    • 2017
  • An optimum route to fabricate oxide dispersion strengthened ferritic superalloy with desired microstructure was investigated. Two methods of high energy ball milling or polymeric additive solution route for developing a uniform dispersion of $Y_2O_3$ particles in Fe-Cr-Al-Ti alloy powders were compared on the basis of the resulting microstructures. Microstructural observation revealed that the crystalline size of Fe decreased with increases in milling time, to values of about 15-20 nm, and that an FeCr alloy phase was formed. SEM and TEM analyses of the alloy powders fabricated by solution route using yttrium nitrate and polyvinyl alcohol showed that the nano-sized Y-oxide particles were well distributed in the Fe based alloy powders. The prepared powders were sintered at 1000 and $1100^{\circ}C$ for 30 min in vacuum. The sintered specimen with heat treatment before spark plasma sintering at $1100^{\circ}C$ showed a more homogeneous microstructure. In the case of sintering at $1100^{\circ}C$, the alloys exhibited densified microstructure and the formation of large reaction phases due to oxidation of Al.

Effect of CrN barrier on fuel-clad chemical interaction

  • Kim, Dongkyu;Lee, Kangsoo;Yoon, Young Soo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.724-730
    • /
    • 2018
  • Chromium and chromium nitride were selected as potential barriers to prevent fuel-clad chemical interaction (FCCI) between the cladding and the fuel material. In this study, ferritic/martensitic HT-9 steel and misch metal were used to simulate the reaction between the cladding and fuel fission product, respectively. Radio frequency magnetron sputtering was used to deposit Cr and CrN films onto the cladding, and the gas flow rates of argon and nitrogen were fixed at certain values for each sample to control the deposition rate and the crystal structure of the films. The samples were heated for 24 h at 933 K through the diffusion couple test, and considerable amount of interdiffusion (max. thickness: $550{\mu}m$) occurred at the interface between HT-9 and misch metal when the argon and nitrogen were used individually. The elemental contents of misch metal were detected at the HT-9 through energy dispersive X-ray spectroscopy due to the interdiffusion. However, the specimens that were sputtered by mixed gases (Ar and $N_2$) exhibited excellent resistance to FCCI. The thickness of these CrN films were only $4{\mu}m$, but these films effectively prevented the FCCI due to their high adhesion strength (frictional force ${\geq}1,200{\mu}m$) and dense columnar microstructures.

Interpretation of Strain States during Clad-Rolling of STS/Al 5 Ply Composites by Means of Texture Analysis (집합조직 분석에 의한 5겹 STS/Al 복합재 클래드 압연 시 변형상태 해석)

  • Kang H. G.;Park J. S.;Park S. H.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.303-306
    • /
    • 2005
  • Two composites of five plies of STS/Al/Al/Al/STS and STS/Al/STS/Al/STS were produced by roll-cladding at $350^{\circ}C$ from ferritic stainless steel (STS) and aluminum (Al) sheets. In order to analyze the strain states during roll-cladding, the evolution of textures at different through-thickness positions in the roll-clad composites was investigated. Simulations with the finite element method (FEM) disclosed that a strain state which was similar to that of normal rolling with a high friction between roll surface and Al sample led to the formation of texture gradients in the Al sheets in the STS/Al/Al/Al/STS composite. Differences in the material velocity of STS and Al in the rolling direction gave rise to the formation of the shear texture in the Al sheets in the STS/Al/STS/Al/STS composite.

  • PDF

Brazing Process of Stainless Steel (스테인리스강의 브레이징 특성)

  • Hong, Sung-Chul;Park, Jun-Kyu;Oh, Joo-Hee;Lee, Jae-Hoon;Kim, Won-Joong;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.40-44
    • /
    • 2011
  • Brazing of a stainless steel was described in this article. Brazing is a joining technology without melting a substrate and joining temperature is higher than $450^{\circ}C$. Brazing can be broadly applicable across industries. In particular, brazing of stainless steel is widely used in aircraft parts, car engines, heat exchangers, etc. due to its excellent strength, corrosion resistance and other suitable characteristics. Characteristics of the stainless steel depend on their classification like austenitic, ferritic and martensitic stainless steels. In addition, there are many processes in brazing and various parameters such as brazing heat source, filler metals, joint design, etc. Therefore, it is necessary to know basic knowledge about brazing to achieve good brazing joint. Accordingly, properties of stainless steel and design of brazing joint and related process were described in this article.

Fracture Resistances of Y2O3 Particle Dispersion Strengthened 9Cr Steel at Room Temperature and High Temperatures (Y2O3 입자 분산강화 9Cr 강의 상온 및 고온 파괴저항특성)

  • Yoon, Ji Hyun;Kang, Suk Hoon;Lee, Yongbok;Kim, Sung Soo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • The fracture resistance and tensile properties of $Y_2O_3$ oxide dispersion strengthened steel containing 9 wt% Cr(9Cr-ODS) were measured at various temperatures up to $700^{\circ}C$. The fracture characteristics were compared with those of commercial E911 ferritic/martensitic steel. The strength of 9Cr-ODS was at least 30% higher than that of E911 steel at the test temperatures below $500^{\circ}C$. The strength difference between the two materials was almost diminished at $700^{\circ}C$. 9Cr-ODS showed cleavage fracture behavior at room temperature and unstable crack growth behaviors at $300^{\circ}C$ and $500^{\circ}C$. The J-R fracture resistance of 9Cr-ODS was much lower than that of E911 steel at all temperatures. It was deduced that the coarse $Cr_2O_3$ particles that were formed during the alloying process provided the crack initiation sites of cleavage fracture in 9Cr-ODS.

High heat flux limits of the fusion reactor water-cooled first wall

  • Zacha, Pavel;Entler, Slavomir
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1251-1260
    • /
    • 2019
  • The water-cooled WCLL blanket is one of the possible candidates for the blanket of the fusion power reactors. The plasma-facing first wall manufactured from the reduced-activation ferritic-martensitic steel Eurofer97 will be cooled with water at a typical pressurized water reactor (PWR) conditions. According to new estimates, the first wall will be exposed to peak heat fluxes up to $7MW/m^2$ while the maximum operated temperature of Eurofer97 is set to $550^{\circ}C$. The performed analysis shows the capability of the designed flat first wall concept to remove heat flux without exceeding the maximum Eurofer97 operating temperature only up to $0.75MW/m^2$. Several heat transfer enhancement methods (turbulator promoters), structural modifications, and variations of parameters were analysed. The effects of particular modifications on the wall temperature were evaluated using thermo-hydraulic three-dimensional numerical simulation. The analysis shows the negligible effect of the turbulators. By the combination of the proposed modifications, the permitted heat flux was increased up to $1.69MW/m^2$ only. The results indicate the necessity of the re-evaluation of the existing first wall concepts.

The effect of cooling rates on carbide precipitate and microstructure of 9CR-1MO oxide dispersion strengthened(ODS) steel

  • Jang, Ki-Nam;Kim, Tae-Kyu;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.249-256
    • /
    • 2019
  • The 9Cr-1Mo ferritic-martensitic ODS steel is a promising structural material for the next generation nuclear power plants including fast reactors for application in reactor vessels and nuclear fuel. The ODS steel was cooled down by furnace cooling, air cooling, oil quenching and water quenching, respectively, after normalizing it at $1150^{\circ}C$ for 1 h and then tempering at $780^{\circ}C$ for 1 h. It is found that grain size, a relative portion of ferrite and martensite, martensitic lath configuration, behaviors of carbide precipitates, and hardness of the ODS steel are strongly dependent on a cooling rate. The grain size and martensitic lath width become smaller with the increase in a cooling rate. The carbides were precipitated at the grain boundaries formed between the ferrite and martensite phases and at the martensitic lath interfaces. In addition, the carbide precipitates become smaller and more widely dispersed with the increase in a cooling rate, resulting in that the faster cooling rate generated the higher hardness of the ODS steel.

Simulation of impact toughness with the effect of temperature and irradiation in steels

  • Wang, Chenchong;Wang, Jinliang;Li, Yuhao;Zhang, Chi;Xu, Wei
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.221-227
    • /
    • 2019
  • One of the important requirements for the application of reduced activation ferritic/martensitic steel is to retain proper mechanical properties in irradiation and high temperature conditions. In order to simulate the impact toughness with the effect of temperature and irradiation, a simulation model based on energy balance method consisted of crack initiation, plastic propagation and cleavage propagation stages was established. The effect of temperature on impact toughness was analyzed by the model and the trend of the simulation results was basicly consistent with the previous experimental results of CLAM steels. The load-displacement curve was simulated to express the low temperature ductile-brittle transition. The effect of grain size and inclusion was analyzed by the model, which was consistent with classical experiment results. The transgranular-intergranular transformation in brittle materials was also simulated.

Evolution on Microstructures and Tensile Properties of 10Cr-1Mo ODS Steel with Different Lengths of Mechanical Alloying Process Times (10Cr-1Mo 산화물 분산강화 강의 미세조직과 인장특성에 미치는 기계적 합금화 공정시간의 영향)

  • Noh, Sanghoon;Kim, Tae Kyu
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.375-380
    • /
    • 2021
  • In this study, we investigate the effect of the duration of mechanical alloying on the microstructures and mechanical properties of ODS ferritic/martensitic steel. The Fe(bal.)-10Cr-1Mo pre-alloyed powder and Y2O3 powder are mechanically alloyed for the different mechanical alloying duration (0 to 40 h) and then constantly fabricated using a uniaxial hot pressing process. Upon increasing the mechanical alloying time, the average powder diameter and crystallite size increased dramatically. In the initial stages within 5 h of mechanical alloying, inhomogeneous grain morphology is observed along with coarsened carbide and oxide distributions; thus, precipitate phases are temporarily observed between the two powders because of insufficient collision energy to get fragmented. After 40 h of the MA process, however, fine martensitic grains and uniformly distributed oxide particles are observed. This led to a favorable tensile strength and elongation at room temperature and 650℃.

Weldability of Low-Carbon ASTM A356 CA6NM Martensitic Stainless Steel Casting for Power Plants (발전용 저탄소 ASTM A356 CA6NM 마르텐사이트계 스테인리스 주강의 용접성)

  • Bang, Kook-soo;Park, Chan;Lee, Joo-young;Lee, Kyong-woon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.73-78
    • /
    • 2011
  • Weldability, especially HAZ cold cracking, weld metal solidification cracking, and HAZ liquation cracking susceptibilities, of ASTM A356 CA6NM martensitic stainless steel casting was investigated and compared with that of 9-12% Cr ferritic steel castings. Irrespective of the Cr and Ni content in the castings, the HAZ maximum hardness increased with an increase of carbon content. CA6NM steel, which has the lowest carbon content, had the lowest HAZ hardness and showed no cold cracking in y-slit cracking tests. CA6NM steel, meanwhile, showed the largest weld metal solidification cracking susceptibility in varestraint tests because of its higher amount of impurity elements, phosphorus, and sulfur. All castings investigated had good high temperature ductility in hot ductility tests and showed little difference in liquation cracking susceptibility.