Browse > Article
http://dx.doi.org/10.1016/j.net.2018.09.021

The effect of cooling rates on carbide precipitate and microstructure of 9CR-1MO oxide dispersion strengthened(ODS) steel  

Jang, Ki-Nam (Dongguk University, College of Energy & Environment)
Kim, Tae-Kyu (Korea Atomic Energy Research Institute)
Kim, Kyu-Tae (Dongguk University, College of Energy & Environment)
Publication Information
Nuclear Engineering and Technology / v.51, no.1, 2019 , pp. 249-256 More about this Journal
Abstract
The 9Cr-1Mo ferritic-martensitic ODS steel is a promising structural material for the next generation nuclear power plants including fast reactors for application in reactor vessels and nuclear fuel. The ODS steel was cooled down by furnace cooling, air cooling, oil quenching and water quenching, respectively, after normalizing it at $1150^{\circ}C$ for 1 h and then tempering at $780^{\circ}C$ for 1 h. It is found that grain size, a relative portion of ferrite and martensite, martensitic lath configuration, behaviors of carbide precipitates, and hardness of the ODS steel are strongly dependent on a cooling rate. The grain size and martensitic lath width become smaller with the increase in a cooling rate. The carbides were precipitated at the grain boundaries formed between the ferrite and martensite phases and at the martensitic lath interfaces. In addition, the carbide precipitates become smaller and more widely dispersed with the increase in a cooling rate, resulting in that the faster cooling rate generated the higher hardness of the ODS steel.
Keywords
Oxide dispersion strengthened steel; Heat treatment; Cooling rate; Microstructure; Carbide; Hardness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta, H. Nakashima, Characterization of high temperature creep properties in recrystallized 12Cr-ODS ferritic steel claddings, J. Nucl. Sci. Technol. 39 (2002) 872.
2 H.S. Cho, H. Ohkubo, N. Iwata, A. Kimura, S. Ukai, M. Fujiwara, Improvement of compatibility of advanced ferritic steels with super critical pressurized water toward a higher thermally efficient water-cooled blanket system, Fusion Eng. Des. 81 (2006) 1071.   DOI
3 Y. Yamashita, N. Akasaka, S. Ukai, S. Ohnuki, Microstructural development of a heavily neutron-irradiated ODS ferritic steel (MA957) at elevated temperature, J. Nucl. Mater. 367-370 (2007) 202.   DOI
4 J.J. Huet, L. Coheur, A. De Bremaecker, L. De Wilde, J. Gedopt, W. Hendrix, W. Vandermeulen, F, Print Permalink Translate abrication and mechanical properties of oxide dispersion strengthening ferritic alloy (canning tubes) for fast reactor fuel pins, Nucl. Technol. 70 (1985) 215.   DOI
5 Y. Choi, D. Kim, S. Kim, S. Kang, J. Jang, H. Han, K. Oh, In-situ microstructure evolution of oxide dispersion strengthened ferritic steel under uniaxial deformation, J. Nucl. Mater. 428 (2012) 98.   DOI
6 S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, M. Fujiwara, Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials, J. Nucl. Mater. 204 (1993) 65.   DOI
7 S. Ukai, T. Nishida, H. Okada, Development of oxide dispersion strengthened ferritic steels for FBR Core application(I), J. Nucl. Sci. Technol. 34 (1997) 256.   DOI
8 R.L. Klueh, D.R. Harries, High Chromium Ferritic and Martensitic Steels for Nuclear Applications, 2001. ASTM Stock Number: MONO 3.
9 S. Ohtsuka, S. Ukai, H. Sakasegawa, M. Fujiwara, T. Kaito, T. Narita, Nanomesoscopic structural characterization of 9Cr-ODS martensitic steel for improving creep strength, J. Nucl. Mater. 367-370 (2007) 160.   DOI
10 L. Toualbi, C. Cayron, P. Olier, R. Loge, Y. de Carlan, Relationships between mechanical behavior and microstructural evolutions in Fe 9Cr-ODS during the fabrication route of SFR cladding tubes, J. Nucl. Mater. 42 (2013) 410.
11 L. Toualbi, C. Cayron, P. Olier, et al., Assessment of a new fabrication route for Fe-9Cr-1W ODS cladding tubes, J. Nucl. Mater. 428 (2012) 47.   DOI
12 H.R.Z. Sandim, R.A. Renzetti, A.F. Padilha, D. Raabe, M. Klimenkov, R. Lindau, A. Moslang, Annealing behavior of ferritic-martensitic 9%Cr-ODS-Eurofer steel, Mater. Sci. Eng., A 527 (2010) 3602.   DOI
13 M. Yamamoto, S. Ukai, S. Hayashi, T. Kaito, S. Ohtsuka, Formation of residual ferrite in 9Cr-ODS ferritic steels, Mater. Sci. Eng., A 527 (2010) 4418.   DOI
14 S. Noh, B. Choi, C. Han, S. Kang J. Jang, Y. Jeong, T. Kim, Effects of heat treatments on microstructures and mechanical properties on dual phase steels for high temperature strength, Nucl. Eng. Technol. 45 (2013) 821.   DOI
15 S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, T. Narita, Improvement of creep strength of 9Cr ODS martensitic steel by controlling excess oxygen and titanium concentration, Mater. Trans. 46 (3) (2005) 487.   DOI
16 S. Kim, S. Ohtsuka, T. Kaito, S. Yamashita, M. Inoue, T. Asayama, T. Shobu, Formation of nano-oxide particles and ${\delta}$-ferrite at elevated temperature in 9Cr-ODS steel, J. Nucl. Mater. 417 (2011) 209.   DOI
17 S. Ukai, S. Mizuta, M. Fujiwara, T. Okuda, T. Kobayashi, Development of 9Cr-ODS martensitic steel claddings for fuel pins by means of ferrite to austenite phase transformation, J. Nucl. Sci. Technol. 39 (2002) 778.
18 W.F. Smith, Structure and Properties of Engineering Alloys, second ed., McGraw-Hill, New York, 1993.