• 제목/요약/키워드: ferrite transformer

검색결과 41건 처리시간 0.022초

A Study on the Transformer Design considering the Inrush Current Reduction in the Arc Welding Machine

  • Kim, In-Gun;Liu, Huai-Cong;Cho, Su-Yeon;Lee, Ju
    • Journal of Magnetics
    • /
    • 제21권3호
    • /
    • pp.374-378
    • /
    • 2016
  • The transformer used in an inverter type arc welding machine is designed to use high frequency in order to reduce its size and cost. Also, selecting core materials that fit frequency is important because core loss increases in a high frequency band. An inrush current can occur in the primary coil of transformer during arc welding and this inrush current can cause IGBT, the switching element, to burn out. The transformer design was carried out in $A_P$ method and amorphous core was used to reduce the size of transformer. In addition, sheet coil was used for primary winding and secondary winding coil considering the skin effect. This paper designed the transformer core with an air gap to prevent IGBT burnout due to the inrush current during welding and proposed the optimum air gap length.

고주파 트랜스포머의 권선배열에 기법 따른 손실해석 (Power Loss Analysis according to Winding Array Method of High Frequency Transformer)

  • 윤신용;김일남
    • 전기학회논문지P
    • /
    • 제54권1호
    • /
    • pp.15-19
    • /
    • 2005
  • This paper analyzed the power loss characteristics according to winding thickness and winding method of high frequency transformer. Power loss was analyzed by PExprt using FEM tool. The ferrite core model for analysis be used the EE10 type of TDK cop.. Transformer model objected flyback transformer type applied to flyback converter/inverter. Therefore, analysis results of loss were obtained from inner parameters of DC, AC resistance, leakage inductance, copper loss, core loss, and temperature etc.

$V_2O_5$$CaCo_3$를 첨가한 Mn-Zn Ferrite의 자기적 특성에 관한 연구 (A Study on the Magnetic Properties of Mn-Zn ferrite added on $V_2O_5$ and $CaCo_3$)

  • 권오흥
    • 자원리싸이클링
    • /
    • 제11권5호
    • /
    • pp.30-33
    • /
    • 2002
  • 최근의 전자기기 제품에서 전원 트랜스는 매우 중요한 비중을 차지하고 있다. 이러한 전원트랜스의 소형화, 경량화, 소전력화를얻기 위해서는, 고성능의 자심재료가 필요하다. 본 논문에서는 고성능, 저손실의 자심재료를 위해 Mn-Zn Ferrite에 $V_2$$O_{5}$$CaCo_3$를 첨가하였다. 조성은 MnO : ZnO : $Fe_2$$O_3$=37 : 11 : 52 mol%로 하였다. 이 시료를 $1250^{\circ}C$에서 3시간 소결하였다. 측정은 0.1 MHz에서 초투자율을 측정하였으며, 전력손실은 200 mT에서 25 KHz, 50 KHz, 100 KHz 및 온도를 변화시켜 측정하였다. $V_2$$O_{5}$$CaCo_3$이 각각 0.08 wt%, 0.05 wt% 첨가하였을 경우 측정조건 200 mT, 100 KHz, $^60^\circ}C$에서 415 ㎾/$m^2$의 값을 얻을수 있었다. 따라서$ V_2$$O_{5}$$CaCo_3$를 소량 첨가함으로써 고주파수에서의 주 손실인 와전류 손실을 줄여 전원 트랜스의 전력손실을 저하시킬 수 있었다.

Flat Transformer 코아의 설계와 컨버터 동작 특성 (Study on designing of Flat Transformer and operating characteristics of Converter)

  • 한세원;조한구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.587-590
    • /
    • 2003
  • The first attention in designing a transformer for low temperature rise should be to reduce losses. Leakage inductance and temperature rise are two of the more impotent problems facing the magnetic core technology of today's high frequency transformers. Excessive leakage inductance increases the stress on the switching transistors and limits the duty-cycle, and excessive temperature rise can lead the design limitation of high frequency transformer with high current. The flat transformer technology provides a very good solution to the problems of leakage inductance and thermal management for high frequency power. The critical magnetic components and windings are optimized and packaged within a completely assembled module. The turns ratio in a flat transformer is determined as the product of the number of elements or modules times the number of primary turns. The leakage inductance increase proportionately to the number of elements, but since it is reduced as the square of the turns, the net reduction can be very significant. The flat transformer modules use cores which have no gap. This eliminates fringing fluxes and stray flux outside of the core. The secondary windings are formed of flat metal and are bonded to the inside surface of the core. The secondary winding thus surrounds the primary winding, so nearly all of the flux is captured.

  • PDF

순시 재점등을 위한 소형 HID램프 이그니터 변압기에 대한 연구 (Optimal Design of the Igniter Transformer for the Automotive HID Lamp Ballast)

  • 김우섭;이인규;김창균;이규찬;조보형
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 추계학술대회 논문집
    • /
    • pp.111-115
    • /
    • 2004
  • In this paper, the requirements for the HID lamp igniter transformer capable of hot strike are described. A small size high voltage (HV) transformer composed of a Rod type ferrite core and aluminum foil is designed. The Electro Magnetic characteristics are simulated with Finite Element Methodology (FEM). The design guideline of the HV transformer that produces an output voltage with a peak value of 25kV and a pulse width of larger than loons for a 35W automotive HID ballast prototype is discussed as an illustrative example.

  • PDF

Flat TR용 핵심 쿄아의 제조와 동작 특성 안정화 연구 (Study on manufacturing and operating characteristics of Magnetic cores for Flat TR)

  • 한세원;조한구;유동욱;류명효;최광보;김성배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 유기절연재료 방전 플라즈마연구회
    • /
    • pp.23-26
    • /
    • 2003
  • The flat transformer, typically, has a number of parallel single turn secondary windings. Each secondary winding is coupled to the same primary winding. Therefore, the current in each secondary winding is equal to the ampere-turns in the primary winding, and to each other. These characteristics are particularly advantageous where parallel rectifiers are used. The windings share the current equally, with no need for ballast resistors or other added components. In this study, the ferrite magnetic core samples of Mn-Zn system for the Flat transformer are manufactured and the electrical and magnetic characteristics of its tested. The density of sample FO2-2 sintered at $1350^{\circ}C$ is $4.00kg/m^3$, which shows the good microstructural state. The initial permeability and saturation flux density of FO2 at room temperature is 2700 and 510mT, individually. The power loss of FO2 samples at 250kHz have been ranged $350kW/m^3$ to $80kW/m^3$ with temperature. And the minimum power loss of sample FO2-2 showed at $70^{\circ}C$, which property seems very positive to apply for a flat transformer.

  • PDF

수백 kV급 공심형 펄스 변압기 개발 (Development of several hundred kV Air Core pulse transformer)

  • 김성철;박성수;김상희;허훈;남상훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2132-2135
    • /
    • 2005
  • Cylindrical type air core pulse transformers capable of passing high voltage and energy pulse waveforms with high efficiency and low distortion require a much more delicate design balance of physical dimensions and electrical parameters than iron or ferrite core units. The structure of an air core high voltage pulse transformer is relatively simple, but considerable attention is needed to prevent breakdown between transformer windings. Since the thickness of the windings in spiral type is on the order of sub-millimeter, field enhancement at the edge of the windings is very high. It is, therefore, important to find proper electrical insulation Parameter to make the system compact. Several shapes of the winding are considered for air core pulse transformer development. In this paper, we are described design procedure, parameters measure and experiment results of air core type HV pulse transformer.

  • PDF

Power Loss Calculation of High Frequency Transformers

  • Choi Geun-Soo;Yoon Shin-Yong;Baek Soo-Hyun;Kim Yong
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권3호
    • /
    • pp.338-342
    • /
    • 2006
  • This paper analyzed the power loss of transformers considering the magnetic component. For this, each winding strategy and the effect of air gap between the ferrite core have been an important variable for optimal parameter calculation. Inductors are very well known design rules to devise, but the performance of the flyback converter as a function of transformer winding strategy has not been fully developed. The transformer analysis tool used was PExpert. The influence of the insulator thickness, effect of the air gap, how the window height and variation of the capacitive value effects the coil and insulator materials are some of parameters that have been analyzed in this work. The parameter analysis is calculated to a high frequency of 48[kHz]. Therefore, the final goal of this paper was to calculate and adjust the parameters according to the method of winding array and air gap minimizing the power loss.

Phase Shift Full Bridge Converter for Sever Power using a New Separated Leakage Inductor Winding (SLW) Method

  • Cho, Kyu-Min;Kim, Young-Do;Cho, In-Ho;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.517-519
    • /
    • 2008
  • A new transformer winding method is proposed in this paper. Generally, PWM ZVS topologies use a leakage inductor to achieve ZVS operation. However, the leakage inductance of the transformer is not often enough to meet ZVS condition. Therefore, an additional leakage inductor is necessary, which causes large core loss because high input voltage is applied to the additional leakage inductor during a short commutation period. In this paper, a new separated leakage inductor winding (SLW) method is proposed. With the proposed winding method, a leakage inductor and a transformer can be combined in one ferrite core. Therefore, size and core loss of the additional leakage inductor can be reduced. Experimental results demonstrate that the proposed winding method can achieve a significant efficiency improvement in a 1210.8W (12V, 100.9A) prototype converter.

  • PDF