• Title/Summary/Keyword: fermentation.storage

Search Result 519, Processing Time 0.027 seconds

Studies on the storage of fresh fruits and vegetables by plastic coating (1) on Rall's Janet Apple- (Plastic Coating에 의(依)한 청과물저장연구(靑果物貯藏硏究) (제1보(第1報)) -사과(국광(國光))에 대(對)하여-)

  • Park, Nou-Pung
    • Applied Biological Chemistry
    • /
    • v.12
    • /
    • pp.89-97
    • /
    • 1969
  • These studies were made on coating of fresh fruits and vegetables with PVC under view on preservation of fresh fruits and vegetables due to restrain water evaporation of them and control gas metabolisms. The results obtained, as selection of PVC materials availble for preservation of them, procedure of the coating, useful organic solvents, concentration of PVC solution and the time of dipping, and effects of the preservation of them, were summarized as follows: 1) PVC powder 222 and PVC powder 443 were surveyed as suitable materials for coating apple, and later was excellent in lustrous aspect. 2) The coating procedure which dipt into PVC solution was suitable to treat much within a short space of time, and using of ventillator accelerate rather evaporation of the organic solvent. 3) Aceton and methyethylketon as solvent of the PVC were, in purpose of storage only, avaible, while aceton was, in view ef taste, better. 4) 10% of the PVC solutions were better to preserve the freshness of apple and 5, 4, 1 and 0.5% of them in order were gradually decreased in preservability, and 15% of them as high concentration were looked like fermentation in one week after the coating. 5) The dipping time was also better n minute than 10 seconds in a preservation but 1-2 minutes could be applied owing to be not affected of the taste due to coating. 6) The freshness of treatment groups were extend about 48 days after coating in room temperature but control lost market value with 12 days. 7) Weight of control was decreased to 10-13% but treatment which was dipped into 10% of coating solution for one minute was decreased to 3.5-4.6% and treatment for four minutes was did to 2.9-3.0%. 8) Change in respiration was less is treatment groups than control in exhaustion of $CO_2$, and water soluble sugar, reduced sugar and pH were not changed almost due to coating. 9) Pannel discussion of the taste was indicated that control was better than treatments soon after coating, but treatments were rather than control last period of storage and treatment with aceton solvent specially was better than others.

  • PDF

Changes of Chemical Composition and Microflora in Bottled Vacuum Packed Kimchi during Storage at Different Temperature (진공처리 병포장 김치의 저장조건별 성분과 미생물 변화)

  • Shin, Dong-Hwa;Kim, Moon-Sook;Han, Ji-Sook;Lim, Dae-Kwan;Park, Jun-Myeong
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.127-136
    • /
    • 1996
  • Mak-kimchi (shredded kimchi) which was prepared in a commercial factory was packed in bottle (200 g) under vacuum (560 mmHg) or atmosphere, and chemical characteristics and microbiological parameters were monitored during storage at 5, 15 and $25^{\circ}C$, respectively. Optimum ripening time of the kimchi at different temperature were 2 days at $25^{\circ}C$, 5 days at $15^{\circ}C$ and more than 60 days at $5^{\circ}C$. By vacuum treatment pH and acidity changes in kimchi were considerably retarded. The vacuum of each bottle released within 1 or 2 days at 25 or $15^{\circ}C$, respectively but the pack at $5^{\circ}C$ maintained more than 380 mmHg vacuum for 36 days and then the vacuum slowly released. The colour of kimchi (lightness, redness, yellowness) in bottle increased sharply at $25^{\circ}C$ and $15^{\circ}C$ but sustained a stable level with vacuum treatment at $5^{\circ}C$. The range of total viable count of kimchi in bottle was $10^7{\sim}10^{10}/ml$. The number decreased by storage temperature drop to $5^{\circ}C$ and even more vacuum treatment than atmosphere treatment at $5^{\circ}C$. Lactobacillus brevis, L. plantarum, L. acidophilus, Aerococcus viridans and Streptococcus faecium subsp. casseliflavus were identified in bottled kimchi and L. brevis and L. plantarum contributed to the main function during kimchi fermentation. Those main lactic acid bacteria decreased in numbers at $5^{\circ}C$ than 25 or $15^{\circ}C$ and even more declined in case of vacuum treatment.

  • PDF

Studies on the Isolation and Utilization of Apple Wine Yeasts (우수 사과주효모(酒酵母)의 분리(分離)와 이용(利用)에 관(關)한 연구(硏究))

  • Park, Yoon-Joong;Kim, Chan-Jo;Lee, Suk-Kun;Oh, Man-Jin;Sohn, Cheon-Bae
    • Korean Journal of Agricultural Science
    • /
    • v.5 no.1
    • /
    • pp.35-41
    • /
    • 1978
  • Extensive selection works on wild yeasts of fruits were carried cut to obtain strains which are applicable to apple wine making. Among the total number of 1,358 yeast strains which were isolated from various fruit samples collected from the vicinity of Daejeon and other regions cf Korea, the strains SH-49, SH-129 and SH-338 were found to be useful. Then experiments on their morphological and physiological characteristics, and on the aspects of practical use in apple wine making were proceeded. The results obtained were as follows: 1. The strains SH-49 and SH-129, particularly SH-49, were appeared to have good fermentation ability, tolerance to sulfur dioxide and to produce fine quality of apple wine. 2. Apple wines made by using the strain, SH-49 and SH-129 contained less amount of total acids than those by other strains. 3. Apple wines of SH-49 and SH-129 were clarified rapidly during the primary fermentation period, and their absorbancy at 430 nm after 45 days of storage were approximately half of others. 4. Apple wine of SH-338 contained higher amount of residual sugar and its quality was superior to others. It is considered that this strain could be used in the production of apple wine of a characteristic quality. 5. The strains SH-49 and SH-338 were identified as a Saccharomyces cerevisiae according to Taxanomic Study of Yeasts by Lodder, however, classification of SH-129 was suspended for further study.

  • PDF

Quality Characteristics of the Salt-Fermented Oysters in Olive Oil (기름담금 염장발효 굴의 품질특성)

  • Kim, Seok-Moo;Kong, Chung-Sik;Kim, Jong-Tae;Kang, Jeong-Koo;Kim, Nam-Woo;Kim, Jeong-Bae;Oh, Kwang-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1398-1406
    • /
    • 2004
  • To develop the new type of salt-fermented seafoods, the salt-fermented oysters in olive oil (product SO) were manufactured, and food components and quality characteristics of product SO were examined. The optimum processing condition for product SO is as follows. The raw oyster with no shell was washed off with 3% saline solution. Then dewatered, and dipped in the brine-salting solution made up with saturated saline solution and oyster sauce (2 : 1 v/v) mixture added 1% sodium erythorbic acid and 0.2% polyphosphate. After salt-fermentation it ripened by brine salting at 5$\pm$1$^{\circ}C$ for 15 days. Then dried at 15$^{\circ}C$ for 4 hours with cool-air, and packed in No. 3B hexahedron type can. Finally, poured with olive oil and seamed it by double-seamer. The moisture, crude protein, crude ash and volatile basic nitrogen contents of the product SO were 61.6%, 12.0%, 16.3% and 34.3 mg/100 g, respectively. In taste-active components of the product SO, total amount of free amino acids is 2,335.4 mg/100 g and it has increased by 50% overall during salt-fermentation 15 day. Taurine, glutamic acid, proline, glycine, alanine, $\beta$-alanine and lysine were detected as principal free amino acids. The contents of inorganic ions were rich in Na and K ion, while the amounts of nucleotide and its related compounds and other bases except betaine were small. From the results of this research, the product SO had a superior organoleptic qualities compared with conventional oyster product, and could be reserved in good conditions for storage 90 days at room temperature.

Studies on the Packaging and Preservation of Kimchi (우리나라 김치의 포장과 저장방법에 관한 연구)

  • Lee, Yang-Hee;Yang, Ick-Whan
    • Applied Biological Chemistry
    • /
    • v.13 no.3
    • /
    • pp.207-218
    • /
    • 1970
  • Studies were carried out to develope the most economical and practical methods of packaging and preservation of kimchi, so commercialization of kimchi manufacture could proceed rapidly. The results obtained may be summarized as following. (1) It is generally established that the acceptable range of lactic acid content of kimchi is between 0.4% and 0.75%. Based on sensory evaluation, kimchi having lactic acid content below 0.4% and above 0.75% was not edible, and the time of optimum taste corresponded to the vicinity of 0.5% of lactic acid content. For the refrigeration storage with or without preservatives, the packaging kimchi in plastic film must be done at the lactic acid content of 0.45%, for lactic acid fermentation will continue slowly after the packaging. However, for the heat sterilized kimchi the packaging should be done at the 0.5% of lactic acid content for the best because lactic acid fermentation is completely stopped after the packaging. (2) Polyethylene, polypropylene, and polycello were chosen as suitable packaging materials. Polyethylene is cheapest among them but kimchi packaged in this film was damaged frequently in handling process and gave off kimchi flavor. On the other hand polypropylene also gave off kimchi flavor, but its higher mechanical strength gave better protection to kimchi and it had superior display effect due to the transparancy. Therefore polypropylene made much better packaging material. Polycello proved to be the best packaging material from the standpoint of physical characteristics but its price is higher than that of other plastic films. To be effective, the thickness of plastic films for packaging kimchi must exceed 0.08mm. (3) Keeping property of kimchi appeared to be excellent by means of freezing. However, by the time the frozen kimchi was thawed out at room temperature, moisture loss due to drip was extensive, rendering the kimchi too stringy. (4) Preservation of kimchi at refrigerated temperatures proved to be the best method and under the refrigerated condition the kimchi remained fresh as long as 3 months. The best results were obtained when kimchi was held at $0^{\circ}C$. (5) In general, preservatives alone were not too elective in preserving kimchi. Among them potassium sorbate appeared to be most effective with the four fold extension of self-life at $20^{\circ}C$ and two fold extension at $30^{\circ}C$. (6) In heat sterilization the thickness of packaged kimchi product had a geat effect upon the rate of heat penetration. When the thickness ranged from 1.5 to 1.8cm, the kimchi in such package could be sterilized at $65^{\circ}C$ for 20 minutes. Kimchi so heat treated could be kept at room temperature as long as one month without apparent changes in quality. (7) Among combination methods, preservation at refrigerated and heat sterilization could be favorably combined. When kimchi was stored at $4^{\circ}C$ after being sterilized at $65^{\circ}C$ for 20 minutes, it was possible to preserve the kimchi for more than 4 months.

  • PDF

Development of a 2-fluid Jet Mixer for Preventing the Sedimentation in Livestock Liquid Manure Storage Tank (가축분뇨액비저장조 침전물 퇴적 방지를 위한 2류체 제트노즐식 교반장치 개발에 관한 연구)

  • Yu, B.K.;Hong, J.T.;Kim, H.J.;Kweon, J.K.;Oh, K.Y.;Park, B.K.
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.207-220
    • /
    • 2012
  • There are around 7,500 manure tanks to treat the manures from pigs in Korea. In the tank, there are too much sediments deposited on the base and wall, which causes low efficiency of stock capacity and manure fermentation. In order to minimize sediments and to ferment manure effectively, we developed a 2-fluid jet mixer for mixing sediments in liquid livestock manure tank. For developing the prototype, we tested a factorial experimental system with various nozzles, and simulated CFD models with two kinds of nozzle arrangement. From the results of factorial experiment and CFD simulation, we concluded the dia. ratio of primary : secondary nozzle should be 1:2 and the nozzles should be arranged at the same distances toward to the circumferential direction. With this results, we manufactured a 2-fluid jet mixer which is consists of four 2-phase nozzles, centrifugal slurry pump and root's type air blower. And, we carried out the performance test of the prototype in the round shaped liquid manure tank in the farm. The performance test results showed that the uniformity of TS (Total Solid) and VS (Volatile Solid) was raised from 21.3 g/L, 13.3 g/L In steady state to TS and VS to 23.0 g/L, 14.1 g/L in the mixing operation. Therefore, we could conclude that the prototype of 2-fluid mixer could make the solid material which could be sediments in the tank not to be deposited in the tank and to be contacted to air bubbles which could enhance the efficiency of the fermentation of livestock manure.

Manufacturing and Physicochemical Properties of Wine using Hardy Kiwi Fruit (Actinidia arguta) (다래를 이용한 발효주의 제조 및 이화학적 특성)

  • Park, Kyung Lok;Hong, Sung Wook;Kim, Young Joon;Kim, Soo Jae;Chung, Kun Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.327-334
    • /
    • 2013
  • For the development of hardy kiwi wine, we arranged for the post-maturity of hardy kiwi fruit, treated them with calcium carbonate and a pectinase enzyme complex, investigated the resulting physicochemical properties and conducted a sensory evaluation. The period determined for creating post-maturity in the hardy kiwi fruit was determined as 5 days storage at room temperature following maturity. During this time the yield of fruit juice was increased from 22.1% to 53.5% using 0.1% (v/v) cytolase PCL5 for 2 h at room temperature. 0.1% (w/v) calcium carbonate was also added during the process of aging, for the reduction of the sour taste. The fermentation trial of the hardy kiwi wine was prepared using water (25% or 50%), sugar ($24^{\circ}brix$), 0.1% (w/v) $CaCO_3$, 0.1% (v/v) cytolase PCL5, $K_2S_2O_5$ (200 ppm), and yeast ($1.5{\times}10^7$ cell/ml). Fermentation then occurred for 2 weeks at $20^{\circ}C$. The pH value, total acidity, alcohol, and reducing sugar content of the resulting hardy kiwi wines of 25% (v/w) and 50% (v/w) water, were in a range of pH 3.4-3.7, 1.12-1.21%, 14.3-14.4%, and 15-16 g/l, respectively. Citric acid and fructose constituted the major organic acids and the free sugar of the 25% and 50% hardy kiwi wine, respectively. Volatile flavor components, including 10 kinds of esters, 8 kinds of alcohols, 5 kinds of acids, 3 kinds of others and aldehydes, were determined by GC analysis. The results of sensory evaluation demonstrated that 50% hardy kiwi wine is more palatable than 25% hardy kiwi wine.

Effect of Ethanolic Extract of Schizandra chinensis for the Delayed Ripening Kimchi Preparation (오미자(Schizandra chinensis) 추출물이 김치의 과숙억제에 미치는 영향)

  • Moon, Young-Ja;Park, Sun;Sung, Chang-Keun
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.1
    • /
    • pp.7-14
    • /
    • 2003
  • This study mainly focused on to investigate the effects of Schizandra chinensis on the growth of a bacterium, CS6 which was isolated from kimchi. CS6 was final]y identified to lactobacillus plantarum that caused acidification of kimchi. The ethanolic extract of Schizandra chinensis(EES) inhibited the growth of L. plantarum. Minimum inhibition concentration of crude EES on L. plantarum was 62.5mg/$m\ell$. In broth culture, 5$\mu\textrm{g}$/$m\ell$ of EES completely inhibited the growth of L. plantarum during fermentation. The addition of 0.4% of EES has no apparent effect on quality including the taste and color on kimchi. It was expected that EES-containing kimchi could extend the period of preservation. Analysis of organic acids in water fractions of EES was carried out by HPLC. It is apparent that antimicrobial active fractions contained the highest concentration of succinic acid, a little tartaric acid and malic acid. Among these organic acids, succinic acid showed the strong inhibitory effect against L. plantarum CS6 in vitro. Succinic acid-containing kimchi with a concentration of 0.4 and 0.5% had the inhibitory effect on growth of L. plantarum. Inhibitory effect of EES on amylase, cellulase and pectinase was also tested. In conclusion, the present experiment demonstrated that EES inhibited the growth of L. plantarum, and various enzyme activity. EES-containing kimchi was sustained the hardness, and initial acidity during fermentation. EES was considered as the possible additive of kimchi process and EES added in kimchi increase the quality, and storage period of kimchi.

Effects of Fermented Total Mixed Ration and Cracked Cottonseed on Milk Yield and Milk Composition in Dairy Cows

  • Wongnen, C.;Wachirapakorn, C.;Patipan, C.;Panpong, D.;Kongweha, K.;Namsaen, N.;Gunun, P.;Yuangklang, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.12
    • /
    • pp.1625-1632
    • /
    • 2009
  • Four lactating Holstein Friesian crossbred cows, with an average initial weight of 450 kg, 48${\pm}$12 days in milk and initial milk yield of 18 kg/h/d, were randomly arranged according to a 2${\times}$2 factorial arrangement in a 4${\times}$4 in Latin square design with 21-d period to investigate the effects of type of total mixed ration (TMR) and type of whole cottonseed (WCS) on intake, digestibility and milk production. The dietary treatments were i) TMR and WCS supplementation at 0.5 kg/h/d, ii) TMR and cracked WCS (cWCS) supplementation at 0.5 kg/h/d, iii) fermented TMR (FTMR) and WCS supplementation at 0.5 kg/h/d, and iv) FTMR and cWCS supplementation at 0.5 kg/h/d. Voluntary feed intake was 15.9, 15.2, 15.4 and 15.6 kg DM/d in dietary treatment 1, 2, 3 and 4, respectively. Digestibility of DM, OM, CP, EE, NDF and ADF were not significantly different among dietary treatments. Ruminal pH, $NH_{3}-N$ and volatile fatty acids in the rumen were also not significantly different among type of TMR or type of WCS. Blood urea-N concentration was not significantly different among dietary treatments. Ruminal bacteria population tended to increase but ruminal protozoa population tended to decrease with supplementation of cWCS, but they were not affected by FTMR. Milk yield and 3.5% FCM were not statistically different among treatments (16.6, 16.2, 17.0, 16.3 kg/d and 18.0, 18.6, 19.9 and 19.0 kg/d, respectively). Milk composition was not significantly different among dietary treatments. However, unsaturated fatty acids in milk fat in cows fed FTMR were lower (p<0.05) than in cows fed TMR. In conclusion, fermentation is a conceivable method to improve the quality of TMR for long-time storage and the cracking method is suitable to release the fat from cottonseed for enhancing fatty acid deposition in milk. Thus, the combination of FTMR and cWCS supplementation would be an alternative strategy to improve performance of lactating cows.

Quality Characteristics and Antioxidant Activity of Yogurt Added with Acanthopanax Powder (오가피 분말을 첨가한 요구르트의 품질 특성 및 항산화 활성)

  • Oh, HanSeul;Kang, SungTae
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.765-771
    • /
    • 2015
  • This study was performed to examine the quality characteristics and antioxidant activity of the curd yogurt with different contents (0.5-2%, w/w) of acanthopanax powder (AP). The pH decreased with increasing AP content until 16 h, whereas the treated groups showed higher pH levels than the control group after 20 h. The viscosity and the viable cell counts of the yogurt with 2% AP were lower than those of the control group during fermentation, significantly. Color values of AP yogurt were lower in terms of brightness, whereas redness and yellowness values were higher compared to the control group. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and soluble content significantly increased with increasing AP content. Consumer acceptability score of yogurt with 0.5% AP was ranked higher than other yogurts. Yogurt added with 0.5% AP showed no differences in pH, titrable acidity, and viable cell counts compared to the control group after storage at $4^{\circ}C$ for 14 days.