• Title/Summary/Keyword: fermentation temperature

Search Result 1,150, Processing Time 0.029 seconds

Production of a Phospholipase C by Bacillus cereus and Its Characterization (Bacillus cereus에 의한 C형 인지질 분해효소의 생산과 특성 고찰)

  • 서국화;임용식;이종일
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.250-256
    • /
    • 2004
  • In this work we have cultivated several B. cereus strains in a complex LB medium in order to study the production of phospholipase C (PLC), and among them B. cereus 318 showed the highest productivity of PLC. Some components, i.e., 5 g/L glucose, 5 g/L yeast extract, 5 g/L peptone, 0.5∼1.0 g/L K$_2$HPO$_4$, 0.02∼0.04 g/L ZnSO$_4$$.$7H$_2$O and 3 g/L NaHCO$_3$ were found to be optimal for the high production of PLC by B. cereus 318. Optimal culture temperature and pH were found to be 30$^{\circ}C$ and pH 7.5 for the PLC production, respectively. Optimum reaction temperature and pH of the PLC produced by B. cereus 11 and 318 were 45$^{\circ}C$ and pH 4.0, while they were 50$^{\circ}C$ and pH 7.0 for the PLC by B. cereus 559. The PLC produced by B. cereus was activated by Mn$\^$2+/, Co$\^$2+/ and dimethyl sulfoxide (DMSO), but its activity was inhibited by Cu$\^$2+/ and partially by glycerol, isopropanol and sodium dodecyl sulfate (SDS).

Change of Pesticide Residues In Field-sprayed Young Chinese Cabbages and Young Radishes During Kimchi Preparation and Storage in Kimchi Fridge (얼갈이 배추와 열무에 엽면 살포된 농약의 김치 제조 및 김치냉장고 저장에 의한 변화)

  • Kwon, Hyeyoung;Son, Kyung-Ae;Kim, Taek-Kyum;Hong, Su-Myeong;Cho, Nam-Jun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.221-227
    • /
    • 2014
  • This study was investigated the change of pesticide residues in young Chinese cabbages and young radishes sprayed with pesticides (young Chinese cabbage: diazinon EC, dimethomorph WP and imidacloprid WP, young radish: diazinon EC, imidacloprid WP and procymidone WP) during Kimchi preparation and storage in Kimchi fridge ($1.8^{\circ}C$) for 67 days. Pesticide residues in young Chinese cabbages were removed by up to 31~52% through brining and washing, 57~74% through seasoning with ingredients, 61~76% through 14 hours storage at room temperature, and 70~82% through storage in Kimchi fridge. Pesticide residues in young radishes were removed by up to 57~85% through seasoning with ingredients, 59~86% through 17 hours storage at room temperature, and 74~91% through storage in Kimchi fridge. It means that brining and washing process was more efficient than fermentation process.

A Study on the Adsorption at Oil-Water Interface and the Emulsion Stabilizing Properties of Soy Protein Isolate (분리 대두단백질의 기름-물 계면흡착 과 유화안정성에 관한 연구)

  • Kim, Young-Sug;Cho, Hyung-Yong;Cho, Eun-Kyung;Lee, Shin-Young;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.468-474
    • /
    • 1986
  • The emulsifying properties of soy protein isolate were measured at various conditions, and the relationships between the emulsifying properties and solubility, viscosity, hydrophobicity, protein adsorption, the tension at water-oil interface were investigated. The emulsifying properties are minimum at the isoelectric point(pI), and the effect of pH parallels its effect on protein solubility. The emulsifying activity is increasing up to $50^{\circ}C$ and then is somewhat decreasing above that temperature, while the emulsion stability is continuously decreasing. Except for phosphates, the salts cause the decrease of the emulsifying properties. The hydrophobicity is increasing as the temperature increases and decreasing somewhat as pH gets lower. However, it is increasing substantially at pH below the pI. The maximum protein adsorption at the water-oil interface is 0.78, 0.47, and $0.33mg/m^2$ at pH 2, 7, and 4, respectively. The tension at water-oil interface is 19.76 dyne/cm in the absence of soy protein, whereas it is decreasing to 11.45-18.08 dyne/cm in the presence of the protein.

  • PDF

Purification and Characterization of Phospholipase D from Actionmycetes KF923 (방선균 KF923이 생산하는 Phospholipase D의 정제 및 특성)

  • 곽보연;윤석후;김창진;손동화
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.78-83
    • /
    • 2004
  • In order to screen microorganisms producing phopholipase D (PLD) had high transphosphatidylation activity, about 1,000 Actinomycetes strains were isolated from the 63 soil samples, collected over 6 local area in Korea. When the hydrolytic activity in the supernatant was determined, 131 strains produced PLD more than 0.3U/$m\ell$. Among 131 culture broths tested, 23 ones had transphosphatidylation activity higher than 20% and finally one strain (Actinomycetes KF923), which had highest hydrolytic and transphophadylation activity, was selected. Actinomycetes KF923 showed the highest hydrolytic activity (13U/$m\ell$) and phosphatidylation activity (95%) after 48 h fermentation using the P medium (yeast extract 1%, peptone 1%, glucose 1.5%, glycerol 1%, $CaCO_3$ 0.4%, pH 7.2). PLD was purified from the culture broth of Actinomycetes KF923 and the specific activity of purified PLD was 567U/mg. The molecular weight of PLD was about 55kD and the optimum pH and temperature were pH 6.0 and $60^{\circ}C$, respectively. The stability of PLD toward pH and temperature were high around pH 8.0 and below $40^{\circ}C$ Special metal ions were not necessary to the PLD activity.

Characteristics of ${\beta}-galactosidase$ activity in Lactobacillus plantarum from kimchi (김치에서 분리한 유산균 Lactobacillus plantarum의 ${\beta}-galactosidase$ 특성에 관한 연구)

  • Kang, Me-Seon;Rhee, Young-Hwan
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.60-66
    • /
    • 1996
  • To investigate a possible application of three strains of lactic acid bacteria(strain No. 49. No. 61. No. 75) from kimchi in milk fermentation industry, the optimal condition for production of intracellular ${\beta}-galactosidase$ from Lactobacillus(L.) plantarum and its enzymatic properties were examined. The preferable carbon source of the medium for strain No. 49 in production of ${\beta}-galactosidase$ was MRS broth with 1.0% lactose instead of dextrose of pH 65. for strain No. 75 with 1.0% galactose and for strain No. 61 with 3.0% lactose at pH 7.5, respectively. The maximum enzyme production from strain No. 49, No. 75 was observed after 48 hours culture at $30^{\circ}C$ in a medium containing the appropriate carbon source, from strain No. 61 after 48 hours culture at room temperature. The optimum temperature for ${\beta}-galactosidase$ activity from L. plantarum was $60^{\circ}C$ for strain No. 49, $37^{\circ}C$ for strain No. 61 and $50^{\circ}C$ for strain No. 75, respectively. The heat stability of enzyme activities for all three strains remained 90% at $45^{\circ}C$. The optimal pH was pH 6.5 and enzyme activities were most stable at pH for all three bacteria.

  • PDF

A Study of the Stability and Moisturizing Effect of Non-Animal Cholesteric Liquid Crystal (비동물성 콜레스테릭 액정의 안정성과 보습효능에 관한 연구)

  • Woo, Byoung Young;Min, Dae Jin;Baek, Heung Soo;Kim, Shin Hyoung;Hwang, Joon Young;Park, Young Ho;Lee, John Hwan;Shin, Song Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.141-153
    • /
    • 2014
  • This study is about the development of cholesteric liquid crystals (CLCs), which are highly applicable to cosmetics formulation. The CLCs made from non-animal origin were chosen not only because they are free of animal viruses but also because they give a sense of security to the cosmetic consumers. Three kinds of new cholesteric derivatives (CI, CC, CN) were synthesized using non-animal cholesterol [NAB cholesterol (ARCH LONZA)], which was originally made by fermentation process. To develop high applicability to cosmetics formulation, we attempted to find out the optimum compositions in which CLCs can maintain their color over a wide range of temperature. The CLCs in 41 different compositions were prepared by the combinations of three cholesteric derivatives and a visual evaluation method was employed to determine the range of temperature at which the CLCs display their color. The 205 UV-VIS spectral data obtained from 41 CLCs at various temperatures were simultaneously analyzed to investigate the critical factors affecting the characteristics of the CLCs. Results showed that A4, A5, A6 and A7 were the best compositions to cosmetics formulation. A6 composition had a great moisturizing effect by the artificial skin test ($AmoReSkin^{TM}$).

Data Build-up for the Construction of Korean Specific Greenhouse Gas Emission Inventory in Livestock Categories

  • Won, S.G.;Cho, W.S.;Lee, J.E.;Park, K.H.;Ra, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.439-446
    • /
    • 2014
  • Many studies on methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from livestock industries have revealed that livestock production directly contributes to greenhouse gas (GHG) emissions through enteric fermentation and manure management, which causes negative impacts on animal environment sustainability. In the present study, three essential values for GHG emission were measured; i.e., i) maximum $CH_4$ producing capacity at mesophilic temperature ($37^{\circ}C$) from anaerobically stored manure in livestock category ($B_{0,KM}$, Korean livestock manure for $B_0$), ii) $EF_{3(s)}$ value representing an emission factor for direct $N_2O$ emissions from manure management system S in the country, kg $N_2O-N$ kg $N^{-1}$, at mesophilic ($37^{\circ}C$) and thermophilic ($55^{\circ}C$) temperatures, and iii) $N_{ex(T)}$ emissions showing annual N excretion for livestock category T, kg N $animal^{-1}$ $yr^{-1}$, from different livestock manure. Static incubation with and without aeration was performed to obtain the $N_2O$ and $CH_4$ emissions from each sample, respectively. Chemical compositions of pre- and post- incubated manure were analyzed. Contents of total solids (% TS) and volatile solid (% VS), and the ratio of carbon to nitrogen (C/N) decrease significantly in all the samples by C-containing biogas generation, whereas moisture content (%) and pH increased after incubation. A big difference of total nitrogen content was not observed in pre- and post-incubation during $CH_4$ and $N_2O$ emissions. $CH_4$ emissions (g $CH_4$ kg VS-1) from all the three manures (sows, layers and Korean cattle) were different and high C/N ratio resulted in high $CH_4$ emission. Similarly, $N_2O$ emission was found to be affected by % VS, pH, and temperature. The $B_{0,KM}$ values for sows, layers, and Korean cattle obtained at $37^{\circ}C$ are 0.0579, 0.0006, and 0.0828 $m^3$ $CH_4$ kg $VS^{-1}$, respectively, which are much less than the default values in IPCC guideline (GL) except the value from Korean cattle. For sows and Korean cattle, $N_{ex(T)}$ values of 7.67 and 28.19 kg N $yr^{-1}$, respectively, are 2.5 fold less than those values in IPCC GL as well. However, $N_{ex(T)}$ value of layers 0.63 kg N $yr^{-1}$ is very similar to the default value of 0.6 kg N $yr^{-1}$ in IPCC GLs for National greenhouse gas inventories for countries such as South Korea/Asia. The $EF_{3(s)}$ value obtained at $37^{\circ}C$ and $55^{\circ}C$ were found to be far less than the default value.

Effect of Hydrocolloids on Physicochemical Properties of Bread Flour Dough with Rice Flour (Hydrocolloids가 쌀을 첨가한 빵용 밀가루 반죽의 물성학적 특성에 미치는 영향)

  • Kim, Yang-Hoon;Lee, Jeong-Hoon;Chung, Koo Chun;Lee, Si-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1819-1825
    • /
    • 2015
  • This study was carried out to investigate the effect of hydrocolloids [hydroxypropylmethyl cellulose (HPMC), xanthan gum (XG), guar gum (GG), and glucomannan (GM)] on the physicochemical properties of bread flour dough containing rice flour. In amylograph analysis, the significantly lowest gelatinization temperature was obtained in dough with XG (P<0.05). XG revealed the highest maximum viscosity while GM revealed the lowest. In viscograph test, the lowest gelatinization temperature and maximum viscosity showed the same result as in the amylograph. Breakdown value was also highest in dough containing XG, but lowest in the control and dough containing HPMC. Setback value was highest in dough containing HPMC, but lowest in dough containing XG. In farinograph analysis, consistency was greatest in dough with HPMC and XG. Hydrocolloids affected water absorption, which was highest in dough containing GM. Development times of dough containing HPMC and XG were low. Stability was lowest in dough with XG. Degree of softening was reduced in dough containing HPMC and GG compared to the control but increased in dough containing XG and GM. Dough containing HPMC and GG showed the largest volume at 3 h of fermentation. Dough with HPMC showed the lowest pH value. Hydrocolloids in this study affected physicochemical properties of dough.

Studies on Microbial Penicillin Amidase (Part 5) Application of Reinforced Calcium-Alginate Gel Entrappment Method for Immobilization of Penicillin Amidase from Bacillus megaterium (미생물 페니실린 아미다제에 관한 연구 (제 5보) Bacillus megaterium 페니실린 아미다제의 새로운 고정화 방법)

  • Son, Hyeung-Jin;Seong, Baik-Lin;Mheen, Tae-Ick;Han, Moon-Hi
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.3
    • /
    • pp.159-164
    • /
    • 1981
  • Reinforced Calcium-alginate gel entrappment method for enzyme immobilization is described with an example of penicillin amidase from Bacillus megaterium KFCC 10029, a partially constitutive mutant of B. megaterium ATCC 14945. Penicillin amidase recovered from the fermentation broth by adsorption on celite is mixed with alginate and gelatin solution, and cast into a pellet or noodle form by coagulation in calcium salt solution followed by crosslinking with glutaraldehyde. Optimum pH and temperature of the immobilized enzyme preparation were 8.0 and 6$0^{\circ}C$, respectively. Kinetic constants such as Km value and the inhibition constant of 6-APA and phenylacetic acid were 2.6 mM, 7.4 mM and 21.2 mM, respectively. The enzyme leakage from the adsorbent during operation was successfully prevented owing to the increase of physical strength of gel coat. The half lives in a column reactor were 6 and 30 days at the respective temperature of 4$0^{\circ}C$ and 3$0^{\circ}C$, which were the 6-8 fold increased values as compared with those of without entrappment. The results highly recommended the use of reinforced Calcium-alginate gel entrappment method for the enhancement of physical strength and the operational stability of alginate gel entrapped enzyme.

  • PDF

Rheological Properties of Chestnut Starch Solution (밤전분 수용액의 리올로지 특성)

  • Park, Hong-Hyun;Kim, Sung-Kon;Pyun, Yu-Ryang;Lee, Shin-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.815-819
    • /
    • 1989
  • Rheological properties of chestnut starch suspensions (3 and 4%, db) and gelatinized starch (4%, db) were investigated with a capillary and rotational viscometer, respectively. Starch suspensions had no yield stress and showed dilatant flow behavior in the temperature ranges of $30-65^{\circ}C$. However, starch suspension showed pseudoplastic flow behavior at $70^{\circ}C\; and\;above\; 65^{\circ}C$ for 3 and 4% concentration, respectively Flow activation energy below $50^{\circ}C$ was 0.56 kcal/mole but increased to 51.9-80.8 kcal/mole at $60-70^{\circ}C$. The behavior of gelatinized starch (4%) was pseudoplastic regardless of heating temperature $(65-80^{\circ}C)$ and time (15-60 min). The apparent viscosity of the starch remained constant after heating at $80^{\circ}C$ for 45 min. The swelling power and log apparent viscosity showed similar pattern. The activation energy of the apparent viscosity of the geletinized starch at $70-80^{\circ}C$ was 13.09kcal/mole. The apparent viscosity of thermal-gelatinized $(90^{\circ}C)$ starch was lower than that of 15 psi-gelatinized starch.

  • PDF