• Title/Summary/Keyword: fermentation products

Search Result 817, Processing Time 0.023 seconds

Effects of fermentation on protein profile of coffee by-products and its relationship with internal protein structure measured by vibrational spectroscopy

  • Samadi;Xin Feng;Luciana Prates;Siti Wajizah;Zulfahrizal;Agus Arip Munawar;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1190-1198
    • /
    • 2023
  • Objective: To our knowledge, there are few studies on the correlation between internal structure of fermented products and nutrient delivery from by-products from coffee processing in the ruminant system. The objective of this project was to use advanced mid-infrared vibrational spectroscopic technique (ATR-FT/IR) to reveal interactive correlation between protein internal structure and ruminant-relevant protein and energy metabolic profiles of by-products from coffee processing affected by added-microorganism fermentation duration. Methods: The by-products from coffee processing were fermented using commercial fermentation product, called Saus Burger Pakan, consisting of various microorganisms: cellulolytic, lactic acid, amylolytic, proteolytic, and xylanolytic microbes, for 0, 7, 14, 21, and 28 days. Protein chemical profiles, Cornell Net Carbohydrate and Protein System crude protein and CHO subfractions, and ruminal degradation and intestinal digestion of protein were evaluated. The attenuated total reflectance-Ft/IR (ATR-FTIR) spectroscopy was used to study protein structural features of spectra that were affected by added microorganism fermentation duration. The molecular spectral analyses were carried using OMNIC software. Molecular spectral analysis parameters in fermented and non-fermented by-products from coffee processing included: Amide I area (AIA), Amide II (AIIA) area, Amide I heigh (AIH), Amide II height (AIIH), α-helix height (αH), β-sheet height (βH), AIA to AIIA ratio, AIH to AIIH ratio, and αH to βH ratio. The relationship between protein structure spectral profiles of by-products from coffee processing and protein related metabolic features in ruminant were also investigated. Results: Fermentation decreased rumen degradable protein and increased rumen undegradable protein of by-products from coffee processing (p<0.05), indicating more protein entering from rumen to the small intestine for animal use. The fermentation duration significantly impacted (p<0.05) protein structure spectral features. Fermentation tended to increase (p<0.10) AIA and AIH as well as β-sheet height which all are significantly related to the protein level. Conclusion: Protein structure spectral profiles of by-product form coffee processing could be utilized as potential evaluators to estimate protein related chemical profile and protein metabolic characteristics in ruminant system.

Assessment of Anti-nutritive Activity of Tannins in Tea By-products Based on In vitro Rumen Fermentation

  • Kondo, Makoto;Hirano, Yoshiaki;Ikai, Noriyuki;Kita, Kazumi;Jayanegara, Anuraga;Yokota, Hiro-Omi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1571-1576
    • /
    • 2014
  • Nutritive values of green and black tea by-products and anti-nutritive activity of their tannins were evaluated in an in vitro rumen fermentation using various molecular weights of polyethylene glycols (PEG), polyvinyl pyrrolidone (PVP) and polyvinyl polypyrrolidone as tannin-binding agents. Significant improvement in gas production by addition of PEG4000, 6000 and 20000 and PVP was observed only from black tea by-product, but not from green tea by-product. All tannin binding agents increased $NH_3$-N concentration from both green and black tea by-products in the fermentation medium, and the PEG6000 and 20000 showed relatively higher improvement in the $NH_3$-N concentration. The PEG6000 and 20000 also improved in vitro organic matter digestibility and metabolizable energy contents of both tea by-products. It was concluded that high molecular PEG would be suitable to assess the suppressive activity of tannins in tea by-products by in vitro fermentation. Higher responses to gas production and $NH_3$-N concentration from black tea by-product than green tea by-product due to PEG indicate that tannins in black tea by-product could suppress rumen fermentation more strongly than that in green tea by-product.

Natural Benzoic Acid and Dairy Products: A Review (천연유래 안식향산과 유제품: 총설)

  • Lim, Sang-Dong;Kim, Kee-Sung
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.37-45
    • /
    • 2014
  • Benzoic acid is widely used in the food industry as a preservative in acidic foods, owing to its antimicrobial activity against various bacteria, yeasts, and fungi. Benzoic acid occurs naturally in different foods such as fruits, vegetables, spices, and nuts as well as in milk and dairy products. Lactic acid bacteria convert hippuric acid, which is naturally present in milk, to benzoic acid; therefore, the latter could also be considered as a natural component of milk and milk products. Benzoic acid is also produced during the ripening of cheese by the propionic acid fermentation process that follows lactic acid fermentation. This paper, we provide basic information regarding the systematic control of natural benzoic acid levels in raw materials, processing intermediates, and final products of animal origin.

  • PDF

Overview of Dairy-based Products with Probiotics: Fermented or Non-fermented Milk Drink

  • Hye Ji Jang;Na-Kyoung Lee;Hyun-Dong Paik
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.255-268
    • /
    • 2024
  • Probiotic products have long been recognized for their health benefits. Additionally, milk has held a longstanding reputation as a dairy product that offers high-quality proteins and essential micronutrients. As awareness of the impact of food on health grows, interest in functional products such as probiotic dairy products is on the rise. Fermentation, a time-honored technique used to enhance nutritional value and food preservation, has been used for centuries to increase nutritional value and is one of the oldest food processing methods. Historically, fermented dairy products have been used as convenient vehicle for the consumption of probiotics. However, addressing the potential drawbacks of fermentation has recently led to increase in research on probiotic dairy drinks prepared without fermentation. These non-fermented dairy drinks have the advantage of maintaining the original flavors of milk drinks, containing potential health functional probiotics, and being an alternative dairy product that is helpful for probiotics intake. Currently, research on plant-based dairy products is rapidly increasing in the market. These developments might suggest the potential for novel forms of non-fermented dairy beverages with substantial prospects in the food market. This review aims to provide an overview of milk-based dairy beverages, both fermented and non-fermented, and discuss the potential of non-fermented dairy products. This exploration paves the way for innovative approaches to deliver probiotics and nutrition to consumers.

Fermentation and Quality Characteristics during the Storage of Greek-style Yogurt Supplemented with Stevia Leaf Extract (스테비아 잎추출물을 첨가한 그릭스타일 요거트의 발효특성 및 저장기간 중 품질특성)

  • Kim, Ha-Na;Yoon, Ji-Woo;Moon, Seon-Ah;Choi, Sung-Bae;Seo, Yong-Min;Park, Junhong;Jhoo, Jin-Woo;Ahn, Sung-Il;Kim, Gur-Yoo
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • In this study, the fermentation and quality characteristics of Greek-style yogurt supplemented with stevia leaf extract during storage were examined. Stevia leaf extract was extracted from dried leaves with hot water and 70% ethanol. The pH decreased significantly in all samples over time during fermentation (p<0.05). In particular, the sharpest decrease was detected in the group in which the hot water extract of stevia was added. Acidity increased significantly over time during fermentation (p<0.05). Lactic acid bacteria counts increased in all samples up to 9 h after the start of fermentation, but decreased after 12 h. The sugar content decreased over time, and there were no major differences between samples. Based on the results of a sensory evaluation, the group treated with stevia extract was rated high in sweetness, but was rated somewhat low in color and flavor. Accordingly, it was rated low in overall acceptability. In a storability experiment, as the days of storage increased, the pH gradually decreased, and acidity showed a tendency to increase. The sugar content showed a tendency to decrease and then increase.

Metabolomic Investigation on Fermentation Products of Achyranthes japonica Nakai by Lactobacillus plantarum

  • Lee, Chang-Wan;Lee, Do Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.378-381
    • /
    • 2020
  • Fermentation has recently re-emerged as an approach for improved functionality of food products in addition to the traditional roles such as shelf life, taste, and texture. Here, we report dynamic changes in the metabolite profiles of Achyranthes japonica Nakai by Lactobacillus plantarum fermentation, primarily, the significant increases in representative functional ingredients, 20-hydroxyecdysone and 25S-inokosterone. Additionally, untargeted metabolite profiling showed 58% of metabolites underwent significant alteration. The most dynamic change was observed in cellobiose, which showed a 56-fold increase. Others were sugar alcohols and amino acids, while lyxitol and erythritol that were among the most dynamically down-regulated.

Korean traditional fermented foods and their future approach (한국 전통발효식품의 현재와 미래발전전략)

  • Shin, Dong-Hwa
    • Food Science and Industry
    • /
    • v.53 no.2
    • /
    • pp.148-165
    • /
    • 2020
  • At beginning the fermentation is naturally occurred by natural microbes. Fermentation techniques apply as two ways, one is fermentation to produce fermented foods and the other is preservation of the foods for longer time for future. They contain various biological active ingredient, like as vitamins. Microorganisms concerning fermentation are well known the functionalities. Each nations in the world have unique and distinct foods and dietary habits on their own specific cultures and accessible edible raw resources of plant or animal origins. Many countries have their unique traditional fermented foods based on their natural conditions. Korea has very famous traditional fermented foods, as Kimchi, fermented soybean products(Jang), fermented fish products(Jeotgal) and vinegar. In this review will discuss the overall fermented foods and typical Korean traditional fermented foods with functionalities, and future effort to enlarge into wide range of new industry.

Improvements of GC and HPLC Analyses in Solvent (Acetone-Butanol-Ethanol) Fermentation by Clostridium saccharobutylicum Using a Mixture of Starch and Glycerol as Carbon Source

  • Tsuey, Liew Shiau;Ariff, Arbakariya Bin;Mohamad, Rosfarizan;Rahim, Raha Abdul
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.293-298
    • /
    • 2006
  • A study on the feasibility of using improved computer-controlled HPLC and GC systems was carried out to shorten the time needed for measuring levels of the substrates (glucose, maltose, and glycerol) and products (acetone, butanol ethanol, acetic acid, and butyric acid) produced by Clostridium saccharobutylicum DSM 13864 during direct fermentation of sago starch to solvent. The use of HPLC system with a single injection to analyse the composition of culture broth (substrates and products) during solvent fermentation was achieved by raising the column temperature to $80^{\circ}C$. Although good separation of the components in the mixture was achieved, a slight overlap was observed in the peaks for butyric acid and acetone. The shape of the peak obtained and the analysis time of 26.66 min were satisfactory at a fixed flow rate of 0.8mL/min. An improved GC system was developed, that was able to measure the products of solvent fermentation (acetone, butanol, ethanol, acetic acid, and butyric acid) within 19.28 min. Excellent resolution for each peak was achieved by adjusting the oven temperature to $65^{\circ}C$.

Functional Properties of Squid By-products Fermented by Probiotic Bacteria

  • Xu, Hua;Gou, Jingyu;Choi, Geun-Pyo;Lee, Hyeon-Yong;Ahn, Ju-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.761-765
    • /
    • 2009
  • The effects of probiotic bacteria on the functional properties of squid by-products were investigated during fermentation. Bifidobacterium longum, Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus, and Pediococcus acidilactici were used to ferment the squid by-products for 96 hr at $37^{\circ}C$. The numbers of all probiotics increased to $10^7-10^8$ CFU/g after 96 hr fermentation. No substantial pH changes were observed. L. rhamnosus and P. acidilactici showed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities. Interleukin-6 (IL-6) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) secreted from B cells increased after adding the extracts of probiotic-fermented squid by-products. The human NK cells were grown well in the B cell-growing broth cultured with the extracts of squid by-products fermented by L. rhamnosus and P. acidilactici. Trimethylamine (TMA) and dimethylamine (DMA) contents were significantly decreased after probiotic-fermentation. Therefore, L. rhamnosus GG and P. acidilactici can be used for the fermentation of squid by-products and their use would provide benefits in functional food products.

Flavor Components of Acetic Fermented Onion Extracts (초산 발효과정 중 양파착즙액 휘발성 향기성분 변화)

  • Jeong, Eun-Jeong;Cha, Yong-Jun
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.4
    • /
    • pp.788-795
    • /
    • 2017
  • This research has attempted to investigate the volatile flavor compounds of onion products through acetic fermentation, and to create a natural beverage with beneficial biological properties which can also fulfill customer quality standards. Onion products (OAF (M): Onion extracts at five days of acetic fermentation, OAF (F): Onion extracts at ten days of acetic fermentation) were produced by acetic fermentation. Volatile flavor compounds from onion extracts, OAF (M) and OAF (F) were used by Mixxor liquid extractions and analyzed by GC/MSD. Compounds of 49, 75 and 69 were identified in onion extracts, OAF(M) and OAF(F) respectively. Among the major volatile flavor compounds classes, sulfur containing compounds (36.7%), acids (31.2%) and aldehydes (13.5%) in onion extracts were changed into acids (69.6%) and alcohols (24.6%) in OAF (M) and acids (80.6%) and alcohols (15.5%) in OAF (F). During acetic fermentation acetic acid, 1,3-butanediol (odorless) and 2,3-butanediol (onion flavor) increased remarkably, sulfur-containing compound such as 2,5-dimethylthiophene having anti-oxidant activities was detected by fermentation.