• Title/Summary/Keyword: fermentation optimization

Search Result 333, Processing Time 0.025 seconds

Model Development for Lactic Acid Fermentation and Parameter Optimization Using Genetic Algorithm

  • LIN , JIAN-QIANG;LEE, SANG-MOK;KOO, YOON-MO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1163-1169
    • /
    • 2004
  • An unstructured mathematical model is presented for lactic acid fermentation based on the energy balance. The proposed model reflects the energy metabolic state and then predicts the cell growth, lactic acid production, and glucose consumption rates by relating the above rates with the energy metabolic rate. Fermentation experiments were conducted under various initial lactic acid concentrations of 0, 30, 50, 70, and 90 g/l. Also, a genetic algorithm was used for further optimization of the model parameters and included the operations of coding, initialization, hybridization, mutation, decoding, fitness calculation, selection, and reproduction exerted on individuals (or chromosomes) in a population. The simulation results showed a good fit between the model prediction and the experimental data. The genetic algorithm proved to be useful for model parameter optimization, suggesting wider applications in the field of biological engineering.

Optimization of Conditions for Extractive Ethanol Fermentation in an Aqueous Two Phase System (수성이상계 에탄올 추출발효 조건의 최적화에 관한 연구)

  • 김진한;허병기;목영일
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.531-537
    • /
    • 1994
  • This study was undertaken with objective of optimizing the conditions of fermentation in an aqueous two-phase system which is composed of polyethylene glycol (PEG) 20000 and crude dextran (Dx). The data were obtained and analyzed using the Box-Wilson's experimental design protocol and the response surface methodology. To reach this end a multilinear polynomial regres- sion model was developed, which can be utilized for the purpose of optimizing the extractive fermentation. Optimum conditions for batch fermentation with aqueous two phase system were found to be at 4.2~5.4% PEG/3.2~4.2% Dx range. The composition of the center was 4.8% PEG/ 3.6% Dx. Optimum operating conditions for initial sugar concentration and fermentation time were approximately 160 g/l, and 21~22 hr, respectively. Fermentation in the aqueous two phase system composed of 5% PEG/4% Dx showed increase of 23% in ethanol concentration, of 9.5% in ethanol yield, and of 19% in ethanol productivity as compared to the case of fermentation of neat Jerusalem artichoke juice.

  • PDF

Optimization of Fermentation Conditions for the Production of Citric Acid by Aspergillus niger NRRL 567 Grown on Agricultural by Products (목질계 농부산물을 이용한 고체발효에서 발효조건 최적화를 통한 구연산 생산 증대)

  • Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.402-406
    • /
    • 2014
  • The present study was carried out to evaluate the potential of lignocellulosic byproducts for the production of citric acid through solid-state fermentation by Aspergillus niger NRRL 567. A sequential optimization based on one-factor-at-a-time method was applied to optimize fermentation conditions and media constituents. The results obtained from the optimization indicated that $30^{\circ}C$, 70% moisture content, 0.5~1.0 mm particle size, pH 5.5 and 4% methanol were found to be the optimum condition at 72 hr fermentation. The application the optimization resulted in an improvement of maximum citric acid production from 74.5 to 206.0 g/kg dry material (DM) from wheat straw. The optimal condition was used to produce citric acid from A. niger grown on different lignocellulosic byproducts, including wheat straw, corn stover and peat moss. A. niger produced the highest citric acid levels of 231.8, 213.8 and 240.2 g/kg DM at 120 hr fermentation, respectively.

Increased Production of Ginsenoside Compound K by Optimizing the Feeding of American Ginseng Extract during Fermentation by Aspergillus tubingensis

  • Song, Woo-Seok;Kim, Min-Ju;Shin, Kyung-Chul;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.902-910
    • /
    • 2022
  • The ginsenoside compound K (C-K) is widely used in traditional medicines, nutritional supplements, and cosmetics owing to its diverse pharmacological activities. Although many studies on C-K production have been conducted, fermentation is reported to produce C-K with low concentration and productivity. In the present study, addition of an inducer and optimization of the carbon and nitrogen sources in the medium were performed using response surface methodology to increase the C-K production via fermentation by Aspergillus tubingensis, a generally recognized as safe fungus. The optimized inducer and carbon and nitrogen sources were 2 g/l rice straw, 10 g/l sucrose, and 10 g/l soy protein concentrate, respectively, and they resulted in a 3.1-fold increase in the concentration and productivity of C-K (0.22 g/l and 1.52 mg/l/h, respectively) compared to those used before optimization without inducer (0.071 g/l and 0.49 mg/l/h, respectively). The feeding methods of American ginseng extract (AGE), including feeding timing, feeding concentration, and feeding frequency, were also optimized. Under the optimized conditions, A. tubingensis produced 3.96 mM (2.47 g/l) C-K at 144 h by feeding two times with 8 g/l AGE at 48 and 60 h, with a productivity of 17.1 mg/l/h. The concentration and productivity of C-K after optimization of feeding methods were 11-fold higher than those before the optimization (0.22 g/l and 1.52 mg/l/h, respectively). Thus, the optimization for the feeding methods of ginseng extract is an efficient strategy to increase C-K production. To our knowledge, this is the highest reported C-K concentration and productivity via fermentation reported so far.

Effects of Fermentation Parameters on Cellulolytic Enzyme Production under Solid Substrate Fermentation (농부산물을 이용한 고체발효에서 발효조건이 목질계 분해 효소 생산에 미치는 영향)

  • Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.302-306
    • /
    • 2014
  • The present study was carried out to optimize fermentation parameters for the production of cellulolytic enzymes through solid substrate fermentation of Trichoderma reesei and Aspergillus niger grown on wheat straw. A sequential optimization based on one-factor-at-a-time method was applied to optimize fermentation parameters including temperature, pH, moisture content and particle size. The results of optimization indicated that $40^{\circ}C$, pH 7, moisture content 75% and particle size between 0.25~0.5 mm were found to be the optimum condition at 96 hr fermentation. Under the optimal condition, co-culture of T. reesei and A. niger produced cellulase activities of 10.3 IU, endoglucanase activity of 100.3 IU, ${\beta}$-glucosidase activity of 22.9 IU and xylanase activity of 2261.7 IU/g dry material were obtained. Cellulolytic enzyme production with optimization showed about 72.6, 48.8, 55.2 and 51.9% increase compared to those obtained from control experiment, respectively.

Optimization of the Lactic Acid Fermentation of Maesil(Prunus mume) (매실을 이용한 젖산발효의 최적 조건)

  • Hwang, Ja-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.4
    • /
    • pp.391-396
    • /
    • 2008
  • In this study, we attempted to optimize the fermentation processes in the production of lactic acid juice with 20% Maesil(Prunus mume) extract using Lactobacillus plantarum isolated from Kimchi, assessing a variety of pH, temperature, sugar compositions, and sugar concentrations. In the preparation of fermented Maesil(Prunus mume) extract, the optimal pH and fermentation temperature were 4.0 and $35^{\circ}C$, respectively. When the effects of various sugar sources and concentrations on lactic acid fermentation were assessed, 15% fructose was shown to yield more acid productivity than was observed with other sugar sources. The optimum composition, on the basis of our sensory evaluations, was determined to be a fructose concentration of 15% and a fermentation time of $72{\sim}96$ hours.

Fermentation Strategies for Recombinant Protein Expression in the Methylotrophic Yeast Pichia pastoris

  • Zhang, Senhui;Inan, Mehmet;Meagher, Michael M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.275-287
    • /
    • 2000
  • Fermentation strategies for recombinant protein production in Pichia pastoris have been investigated and are reviewed here. Characteristics of the expression system, such as phenotypes and carbon utilization, are summarized. Recently reported results such as growth model establishment, app58lication of a methanol sensor, optimization of substrate feeding strategy, DOstat controller design, mixed feed technology, and perfusion and continuous culture are discussed in detail.

  • PDF

Medium optimization for keratinase production by a local Streptomyces sp. NRC 13S under solid state fermentation

  • Shata, Hoda Mohamed Abdel Halim;Farid, Mohamed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.119-129
    • /
    • 2013
  • Thirteen different Streptomyces isolates were evaluated for their ability to produce keratinase using chicken feather as a sole carbon and nitrogen sources under solid state fermentation (SSF). Streptomyces sp. NRC 13S produced the highest keratinase activity [1,792 U/g fermented substrate (fs)]. The phenotypic characterization and analysis of 16S rDNA sequencing of the isolate were studied. Optimization of SSF medium for keratinase production by the local isolate, Streptomyces sp. NRC13S, was carried out using the one-variable-at-a-time and the statistical approaches. In the first optimization step, the effect of incubation period, initial moisture content, initial pH value of the fermentation medium, and supplementation of some agro-industrial by-products on keratinase production were evaluated. The strain produced about 2,310 U/gfs when it grew on chicken feather with moisture content of 75% (w/w), feather: fodder yeast ratio of 70:30 (w/w), and initial pH 7 using phosphate buffer after 8 days. Based on these results, the Box-Behnken design and response surface methodology were applied to find out the optimal conditions for the enzyme production. The corresponding maximal production of keratinase was about 2,569.38 U/gfs.

Optimization of Carbon Sources to Improve Antioxidant Activity in Solid State Fermentation of Persimmon peel Using Lactic Acid Bacteria

  • Hwang, Joo Hwan;Kim, Eun Joong;Lee, Sang Moo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.4
    • /
    • pp.361-368
    • /
    • 2012
  • The present study was conducted to develop persimmon peel, a by-product of dried persimmon manufacturing, as a feed additive via lactic acid bacteria fermentation. Pediococcus pentosaceus, Lactobacillus plantarum, and three strains of Leuconostoc mesenteroides were used as a starter culture in the solid state fermentation of persimmon peel, and antioxidant activity and total polyphenol content were assessed. Leuconostoc mesenteroides KCTC 3100 showed high antioxidant activity (p<0.05), whereas Pediococcus pentosaceus showed high total polyphenol content (p<0.05). These two strains were thus selected as starter culture strains. Glucose, sucrose and molasses were used as variables for optimization and a total 15 experimental runs were produced according to Box-Behnken design. Regarding significant effects of variables, molasses showed linear and square effects on antioxidant activity of persimmon peel fermentation (p<0.05). In conclusion, optimum concentrations of glucose, sucrose, and molasses were determined to be 4.2, 3.9 and 5.3 g/L, respectively, using a response surface model. Antioxidant activity was also improved 2.5 fold after optimization.

Optimization Studies for the Production of Microbial Transglutaminase from a Newly Isolated Strain of Streptomyces sp.

  • Macedo, Juliana Alves;Sette, Lara Duraes;Sato, Helia Harumi
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.904-911
    • /
    • 2008
  • Covalent cross-links between a number of proteins and peptides explain why transglutaminase may be widely used by food processing industries. The objective of this work was optimization of the fermentation process to produce transglutaminase from a new microbial source, the Streptomyces sp. P20. The strategy adopted to modify the usual literature media was: (1) fractional factorial design (FFD) to elucidate the key medium ingredients, (2) central composite design (CCD) to optimise the concentration of the key components. Optimization of the medium resulted in not only an 86% increase in microbial transglutaminase activity as compared to the media cited in the literature, but also a reduction in the production cost. Optimal fermentation conditions - namely temperature and agitation rate - were also studied, using CCD methodology. Usual conditions of $30^{\circ}C$ and 100 rpm were within the optimal area. All other parameters for enzyme production were experimentally proven to be optimum fermentation conditions.