• 제목/요약/키워드: female hormone

검색결과 409건 처리시간 0.031초

Direct Action of Genistein on the Hypothalamic Neuronal Circuits in Female Rats

  • Lee, Woo-Cheol;Lee, Sung-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제14권1호
    • /
    • pp.35-41
    • /
    • 2010
  • Mammalian reproduction is regulated by a feedback circuit of the key reproductive hormones such as GnRH, gonadotropin and sex steroids on the hypothalamic-pituitary-gonadal axis. In particular, the onset of female puberty is triggered by gain of a pulsatile pattern and increment of GnRH secretion from hypothalamus. Previous studies including our own clearly demonstrated that genistein (GS), a phytoestrogenic isoflavone, altered the timing of puberty onset in female rats. However, the brain-specific actions of GS in female rats has not been explored yet. The present study was performed to examine the changes in the activities of GnRH neurons and their neural circuits by GS in female rats. Concerning the drug delivery route, intracerebroventricular (ICV) injection technique was employed to eliminate the unwanted actions on the extrabrain tissues which can be occurred if the testing drug is systemically administered. Adult female rats (PND 100, 210-230 g BW) were anaesthetized, treated with single dose of GS ($3.4{\mu}g$/animal), and sacrificed at 3 hrs post-injection. To determine the transcriptional changes of reproductive hormone-related genes in hypothalamus, total RNAs were extracted and applied to the semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). ICV infusion of GS significantly raised the transcriptional activities of enhanced at puberty1 (EAP-1, p<0.05), glutamic acid decarboxylase (GAD67, p<0.01) which are known to modulate GnRH secretion in the hypothalamus. However, GS infusion could not change the mRNA level of nitric oxide synthase 2 (NOS-2). GS administration significantly increased the mRNA levels of KiSS-1 (p<0.001), GPR54 (p<0.001), and GnRH (p<0.01) in the hypothalami, but decreased the mRNA levels of LH-$\beta$ (p<0.01) and FSH-$\beta$ (p<0.05) in the pituitaries. Taken together, the present study indicated that the acute exposure to GS could directly activate the hypothalamic GnRH modulating system, suggesting the GS's disrupting effects such as the early onset of puberty in immature female rats might be derived from premature activation of key reproduction related genes in hypothalamus-pituitary neuroendocrine circuit.

Japanese medaka에 있어 Quercetin의 난자성숙 저해에 대한 조직병리학적 연구 (Histopathological Study on Inhibition of Oogenesis by Quercetin in Japanese medaka (Oryzias latipes))

  • 황갑수
    • Environmental Analysis Health and Toxicology
    • /
    • 제14권1_2호
    • /
    • pp.55-63
    • /
    • 1999
  • Endocrine disrupting chemicals probably cause the cytological or/and morphological changes of germinal cells in gonad. Accordingly, this study was aimed to make sure that the effect of hormone-mimicking chemicals on gonad morphology such as decrease of germinal cells, inhibition of cellular maturation and change in the ratio of germinal cells in the different developmental phase can be observed by histopathological procedures and can be a useful bio-indicator for the evaluation of endocrine disruption by environmental chemicals. In this experiment, female Japanese medaka were exposured to quercetin, a phytoestrogen, at the concentration of 100 $\mu\textrm{g}$/L. quercetin showed the significant decrease in the number and rate of vitellogenic follicular oocytes in the treated group for 4 and 6 weeks. The weak development of yolk could be also observed. We could conclude that quercetin has anti-estrogenic or androgen-like potency by exerting the inhibition effect on oogenesis in fish female- gonad. From the result of this study, the applied methods and techniques can be evaluated to be a useful biomonitoring means for water pollution, expecting a good result of the subsequent study on apoptosis.

  • PDF

Role of estrogen and RAS signaling in repeated implantation failure

  • Hong, Kwonho;Choi, Youngsok
    • BMB Reports
    • /
    • 제51권5호
    • /
    • pp.225-229
    • /
    • 2018
  • In humans, hormonal regulation is crucial for the preparation of uterine environment leading to either successful implantation or menstrual cycle. Estrogen is a pivotal female steroid hormone that regulates the uterine dynamics along with progesterone in the estrous and menstrual cycles in humans. Estrogen signals act via nuclear estrogen receptor or membrane-bound receptor. The membrane-bound estrogen receptor plays a crucial role in the rapid response of estrogen in the uterine epithelium. Recently, RASD1 has received attention as a novel signal transducer of estrogen in various systems including female reproductive organs. In this review, we discuss the regulation of estrogen and RASD1 signaling in the uterus and also provide insights into RAS as a novel signaling molecule in repeated implantation failure.

Vaginal prolapse by ovarian follicular cysts in a female Jin-do dog

  • Kim, Bang-Sil;Kim, Hee-Su;Kim, Ki-Chul;Park, Chul-Ho;Oh, Ki-Seok;Son, Chang-Ho
    • 대한수의학회지
    • /
    • 제48권2호
    • /
    • pp.223-225
    • /
    • 2008
  • A six-year-old, female Jin-do dog was referred for the recurrence of vaginal prolapse. Less than 7 months previously, the dog with the vaginal prolapse had been treated with hormone therapy because ultrasonography had identified a single follicular cyst in the left ovary. Three months after the first visit, the dog came into heat and the vaginal prolapse recurred. Ultrasonography showed multiple follicular cysts in both ovaries and radioimmunoassay detected a plasma estradiol-$17{\beta}$ concentration of 13.3 pg/ml. Treatment involved the repositioning of the vaginal prolapsed, ovariohysterectomy and the resection of the protruding tissue. The dog had been completely recovered two months later after the treatment.

An investigation of excretion of calcium from female mice ingested with boron by using neutron activation analysis

  • Sun, Gwang Min;Lee, Jaegi;Uhm, Young Rang;Baek, Hani
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2581-2584
    • /
    • 2020
  • Boron has been considered to play a nutritionally important role in humans and animals, but its biochemical functions are not clearly understood. Though there are signs that boron affects the mineral and hormone metabolisms, there is no comprehensive epidemiological evidence establishing a relationship between a boron intake and osteoporosis due to the excretion of calcium in the bones. In this study, we investigated the influence of boron intake on the calcium excretion of old female mice in the menopause. The concentrations of calcium in backbone, thigh bone, blood, kidney, liver, and spleen were investigated by using instrumental neutron activation analysis.

Final height of Korean patients with early treated congenital hypothyroidism

  • Lee, Jiyun;Lee, Jeongho;Lee, Dong Hwan
    • Clinical and Experimental Pediatrics
    • /
    • 제61권7호
    • /
    • pp.221-225
    • /
    • 2018
  • Purpose: Congenital hypothyroidism (CH) is the most common endocrine disorder in children. Thyroid hormone deprivation results not only in mental retardation but also growth retardation. This study investigates the final height (FH) in Korean patients with CH detected by newborn screening and examines factors that may affect the FH. Methods: The medical records of Korean CH patients (n=45) were reviewed. The FH was examined and target height (TH) was calculated based on mid-parental height. The FH z score (FHZ) and TH z score (THZ) were computed using the 2007 Korean National Growth Chart. The FHZ and THZ were compared with a Student t test. The impact of the etiology of CH (athyreosis, dyshormonogenesis, ectopic thyoid, hypoplastic thyroid), initial serum thyroid stimulating hormone (TSH) level, initial free thyroxine (T4) level, and time of therapy initiation based on FH was assessed. Results: The mean FHZ was $0.10{\pm}1.01$ for male patients and $-0.11{\pm}1.09$ for female patients. There were no significant differences between FHZ and THZ for both female (P=0.356) and male patients (P=0.237). No significant relationship was found between FH and the etiology of CH, initial TSH level, initial free T4 level, and the time of therapy initiation. Conclusion: Early intervention and satisfactory management do not appear to impede growth in Korean patients with CH. Thus, early detection and proper management of patients with CH detected by newborn screening program are necessary.

베스테르 철갑상어 치어 성전환을 위한 17α-methyltestosterone과 estradiol-17β 경구투여 효과 (Effects of Oral-Administered 17α-Methyltestosterone and Estradiol-17β for Sex Reversal of Hybrid Sturgeon, Bester Juvenile)

  • 권오남;아다찌신지
    • 한국수산과학회지
    • /
    • 제42권6호
    • /
    • pp.585-590
    • /
    • 2009
  • The purpose of this study was to examine the effects of oral-administered sex hormone for hybrid sturgeon, bester juvenile. The bester juveniles (2 months after hatching) were received a diet containing various doses of $17\alpha$-methyltestosterone (MT) or estradiol-$17\beta$ ($E_2$) for 6 months. Somatic growth of bester sturgeon juvenile did not show significant differences between experimental and control groups (27.9-30.5 cm; 125.1-161.7 g), although survival percentages showed a decreasing tendency in MT-treated animals. By histological examination, germ cells were recorded as smooth type in MT-treated fish and uneven type of germinal epithelium in $E_2$-treated animals. Their sex ratios were 5:4:1 (male: female: undifferentiation) in control and low dose of MT-treated fish (1 mg/kg), and 9:1:0 in fish treated with high dose of MT (10 mg/kg), whereas the ratios were reversed by both low and high doses of $E_2$ treatment, recorded as 2:8:0. Gonadal areas were not significantly differed in all trials (424,600.4 - 1,039,656.3 ${\mu}m^2$). Total number of germ cells, number of germ cells per gonadal areas and number of germ cells per area were significantly higher to 144.7-148.7 cells/section, 374.0-408.5 $cells/mm^2$ and 1,599.5-1,670.9 $cells/mm^2$ in $E_2$ treatment than those of others (30.4-63.9 cells/section, 148.4-226.9 $cells/mm^2$ and 850.0-1,050.6 $cells/mm^2$), respectively. And somatic growth according to their gender was not significantly differed between male and female.

Effect of Sex Steroid Hormones on Bovine Myogenic Satellite Cell Proliferation, Differentiation and Lipid Accumulation in Myotube

  • Lee, E.J.;Bajracharya, P.;Jang, E.J.;Chang, J.S.;Lee, H.J.;Hong, S.K.;Choi, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권5호
    • /
    • pp.649-658
    • /
    • 2010
  • Myogenic satellite cells (MSCs) are adult stem cells that activate and differentiate into myotubes. These stem cells are multipotent as they transdifferentiate into adipocyte-like cells, nerve cells and osteocytes. The effects of steroid hormones ($E_2$ and testosterone) were studied as a further step toward understanding the mechanism of MSCs proliferation and differentiation. In this study, MSCs were grown continuously for 87 days, implying that there may be a group of MSCs that continue to proliferate rather than undergoing differentiation. Isolated MSCs were cultured in Dulbecco's Modified Eagle's Medium supplemented with adult male, female or castrated bovine serum to observe the effect of steroid hormones on MSC proliferation. Cell proliferation was the highest in cultures supplemented with male serum followed by female and castrated serum. The positive effect of male hormone on MSC proliferation was confirmed by the observation of testosterone-mediated increased proliferation of cells cultured in medium supplemented with castrated serum. Furthermore, steroid hormone treatment of MSCs increased lipid accumulation in myotubes. Oil-Red-O staining showed that 17${\beta}$-estradiol ($E_2$) treatment avidly increased lipid accumulation, followed by $E_2$+testosterone and testosterone alone. To our knowledge, this is the first report of lipid accumulation in myotubes due to steroids in the absence of an adipogenic environment, and the effect of steroid hormones on cell proliferation using different types of adult bovine serum, a natural hormonal system. In conclusion, we found that sex steroids affect MSCs proliferation and differentiation, and lipid accumulation in myotubes.

The effects of light colour on female rabbit reproductive performance and the expression of key genes in follicular development

  • Xiaoqing, Pan;Xinglong, Wang;Le, Shao;Jie, Yang;Feng, Qin;Jian, Li;Xia, Zhang;Pin, Zhai
    • Journal of Animal Science and Technology
    • /
    • 제64권3호
    • /
    • pp.432-442
    • /
    • 2022
  • The purpose of this study was to analyse the effects of light colour on rabbit reproductive performance and the expression of key follicular development genes. Rabbits (n = 1,068, 5 months old, 3.6-4.4 kg live body weight) were divided randomly into four groups, housed individually in wire mesh cages and exposed to red, green, blue, and white light-emitting diode (LED) light (control). The lighting schedule was 16 L : 8 D-15 d / 150 lx / 6:00 am-22:00 pm (3 d preartificial insemination to 12 d postartificial insemination). Red light and white light affected the conception rate and kindling rate and increased the total litter size at birth (p < 0.05). The effects of red light on litter size at weaning, litter weight at weaning, and individual weight at weaning increased compared with the green and blue groups. The effects of red light on live litter size at birth were increased compared with those in the blue group (p < 0.05). Compared to white light, green and blue light reduced the number of secondary follicles (p < 0.05). Compared to red light, green and blue light reduced the number of tertiary follicles (p < 0.05). Compared with white light, red LED light resulted in greater ovarian follicle stimulating hormone receptor and luteinizing hormone receptor mRNA expression (p < 0.05). Compared with green and blue LED light, red LED light resulted in greater B-cell lymphom-2 mRNA expression (p < 0.05). Compared with green LED light, red LED light inhibited FOXO1 mRNA expression in rabbit ovaries (p < 0.05). Red light can affect the reproductive performance of female rabbits and the expression of key genes for follicular development.

Repopulation of autophagy-deficient stromal cells with autophagy-intact cells after repeated breeding in uterine mesenchyme-specific Atg7 knockout mice

  • Ji-Eun Oh;Sojung Kwon;Hyunji Byun;Haengseok Song;Hyunjung Jade Lim
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제50권3호
    • /
    • pp.170-176
    • /
    • 2023
  • Objective: Autophagy is highly active in ovariectomized mice experiencing hormone deprivation, especially in the uterine mesenchyme. Autophagy is responsible for the turnover of vasoactive factors in the uterus, which was demonstrated in anti-Müllerian hormone receptor type 2 receptor (Amhr2)-Cre-driven autophagy-related gene 7 (Atg7) knockout (Amhr-Cre/Atg7f/f mice). In that study, we uncovered a striking difference in the amount of sequestosome 1 (SQSTM1) accumulation between virgin mice and breeder mice with the same genotype. Herein, we aimed to determine whether repeated breeding changed the composition of mesenchymal cell populations in the uterine stroma. Methods: All female mice used in this study were of the same genotype. Atg7 was deleted by Amhr2 promoter-driven Cre recombinase in the uterine stroma and myometrium, except for a triangular stromal region on the mesometrial side. Amhr-Cre/Atg7f/f female mice were divided into two groups: virgin mice with no mating history and aged between 11 and 12 months, and breeder mice with at least 6-month breeding cycles with multiple pregnancies and aged around 12 months. The uteri were used for Western blotting and immunofluorescence staining. Results: SQSTM1 accumulation, representing Atg7 deletion and halted autophagy, was much higher in virgin mice than in breeders. Breeders showed reduced accumulation of several vasoconstrictive factors, which are potential autophagy targets, in the uterus, suggesting that the uterine stroma was repopulated with autophagy-intact cells during repeated pregnancies. Conclusion: Multiple pregnancies seem to have improved the uterine environment by replacing autophagy-deficient cells with autophagy-intact cells, providing evidence of cell mixing.