Browse > Article
http://dx.doi.org/10.5187/jast.2022.e31

The effects of light colour on female rabbit reproductive performance and the expression of key genes in follicular development  

Xiaoqing, Pan (College of Animal Science and Technology, Yangzhou University)
Xinglong, Wang (College of Animal Science and Technology, Yangzhou University)
Le, Shao (Institute of Animal Science, Jiangsu Academy of Agricultural Sciences)
Jie, Yang (Institute of Animal Science, Jiangsu Academy of Agricultural Sciences)
Feng, Qin (Institute of Animal Science, Jiangsu Academy of Agricultural Sciences)
Jian, Li (Institute of Animal Science, Jiangsu Academy of Agricultural Sciences)
Xia, Zhang (Institute of Animal Science, Jiangsu Academy of Agricultural Sciences)
Pin, Zhai (Institute of Animal Science, Jiangsu Academy of Agricultural Sciences)
Publication Information
Journal of Animal Science and Technology / v.64, no.3, 2022 , pp. 432-442 More about this Journal
Abstract
The purpose of this study was to analyse the effects of light colour on rabbit reproductive performance and the expression of key follicular development genes. Rabbits (n = 1,068, 5 months old, 3.6-4.4 kg live body weight) were divided randomly into four groups, housed individually in wire mesh cages and exposed to red, green, blue, and white light-emitting diode (LED) light (control). The lighting schedule was 16 L : 8 D-15 d / 150 lx / 6:00 am-22:00 pm (3 d preartificial insemination to 12 d postartificial insemination). Red light and white light affected the conception rate and kindling rate and increased the total litter size at birth (p < 0.05). The effects of red light on litter size at weaning, litter weight at weaning, and individual weight at weaning increased compared with the green and blue groups. The effects of red light on live litter size at birth were increased compared with those in the blue group (p < 0.05). Compared to white light, green and blue light reduced the number of secondary follicles (p < 0.05). Compared to red light, green and blue light reduced the number of tertiary follicles (p < 0.05). Compared with white light, red LED light resulted in greater ovarian follicle stimulating hormone receptor and luteinizing hormone receptor mRNA expression (p < 0.05). Compared with green and blue LED light, red LED light resulted in greater B-cell lymphom-2 mRNA expression (p < 0.05). Compared with green LED light, red LED light inhibited FOXO1 mRNA expression in rabbit ovaries (p < 0.05). Red light can affect the reproductive performance of female rabbits and the expression of key genes for follicular development.
Keywords
Rabbit; Light colour; Reproductive performance; Ovary; Gene expression;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ramakrishnappa N, Rajamahendran R, Lin YM, Leung PCK. GnRH in non-hypothalamic reproductive tissues. Anim Reprod Sci. 2005;88:95-113. https://doi.org/10.1016/j.anireprosci.2005.05.009   DOI
2 Sun L, Wu Z, Li F, Liu L, Li J, Zhang D, et al. Effect of light intensity on ovarian gene expression, reproductive performance and body weight of rabbit does. Anim Reprod Sci. 2017;183:118-25. https://doi.org/10.1016/j.anireprosci.2017.05.009   DOI
3 Shen M, Liu Z, Li B, Teng Y, Zhang J, Tang Y, et al. Involvement of FoxO1 in the effects of follicle-stimulating hormone on inhibition of apoptosis in mouse granulosa cells. Cell Death Dis. 2014;5:e1475. https://doi.org/10.1038/cddis.2014.400   DOI
4 Shen M, Lin F, Zhang J, Tang Y, Chen WK, Liu H. Involvement of the up-regulated FoxO1 expression in follicular granulosa cell apoptosis induced by oxidative stress. J Biol Chem. 2012;287:25727-40. https://doi.org/10.1074/jbc.M112.349902   DOI
5 Shen M, Jiang Y, Guan Z, Cao Y, Li L, Liu H, et al. Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy. Autophagy. 2017;13:1364-85. https://doi.org/10.1080/15548627.2017.1327941   DOI
6 Kong C, Liu K, Wang Q, Fu R, Si H, Sui S. Periplaneta americana peptide decreases apoptosis of pig-ovary granulosa cells induced by H2O2 through FoxO1. Reprod Domest Anim. 2021;56:1413-24. https://doi.org/10.1111/rda.14006   DOI
7 Webb AR. Considerations for lighting in the built environment: non-visual effects of light. Energy Build. 2006;38:721-7. https://doi.org/10.1016/j.enbuild.2006.03.004   DOI
8 Chang AM, Scheer FAJL, Czeisler CA, Aeschbach D. Direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans depend on prior light history. Sleep. 2013;36:1239-46. https://doi.org/10.5665/sleep.2894   DOI
9 Chellappa SL, Ly JQM, Meyer C, Balteau E, Degueldre C, Luxen A, et al. Photic memory for executive brain responses. Proc Natl Acad Sci USA. 2014;111:6087-91. https://doi.org/10.1073/pnas.1320005111   DOI
10 Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci USA. 2015;112:1232-7. https://doi.org/10.1073/pnas.1418490112   DOI
11 van der Lely S, Frey S, Garbazza C, Wirz-Justice A, Jenni OG, Steiner R, et al. Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers. J Adolesc Health. 2015;56:113-9. https://doi.org/10.1016/j.jadohealth.2014.08.002   DOI
12 Bourgin P, Hubbard J. Alerting or somnogenic light: pick your color. PLOS Biol. 2016;14:e2000111. https://doi.org/10.1371/journal.pbio.2000111   DOI
13 Rahman SA, Flynn-Evans EE, Aeschbach D, Brainard GC, Czeisler CA, Lockley SW. Diurnal spectral sensitivity of the acute alerting effects of light. Sleep. 2014;37:271-81. https://doi.org/10.5665/sleep.3396   DOI
14 Mattaraia VGM, Bianospino E, Fernandes S, Vasconcelos JLM, Moura ASAMT. Reproductive responses of rabbit does to a supplemental lighting program. Livest Prod Sci. 2005;94:179-87. https://doi.org/10.1016/j.livprodsci.2004.10.012   DOI
15 Shuboni DD, Cramm SL, Yan L, Ramanathan C, Cavanaugh BL, Nunez AA, et al. Acute effects of light on the brain and behavior of diurnal Arvicanthis niloticus and nocturnal Mus musculus. Physiol Behav. 2015;138:75-86. https://doi.org/10.1016/j.physbeh.2014.09.006   DOI
16 van der Pol CW, van Roovert-Reijrink IAM, Maatjens CM, Gussekloo SWS, Kranenbarg S, Wijnen J, et al. Light-dark rhythms during incubation of broiler chicken embryos and their effects on embryonic and post hatch leg bone development. PLOS ONE. 2019;14:e0210886. https://doi.org/10.1371/journal.pone.0210886   DOI
17 Hieke ASC, Hubert SM, Athrey G. Circadian disruption and divergent microbiota acquisition under extended photoperiod regimens in chicken. PeerJ. 2019;7:e6592. https://doi.org/10.7717/peerj.6592   DOI
18 Zerani M, Parillo F, Brecchia G, Guelfi G, Dall'Aglio C, Lilli L, et al. Expression of type I GNRH receptor and in vivo and in vitro GNRH-I effects in corpora lutea of pseudopregnant rabbits. J Endocrinol. 2010;207:289-300. https://doi.org/10.1677/JOE-10-0109   DOI
19 Van Cruchten S, Van den Broeck W, Duchateau L, Simoens P. Apoptosis in the canine endometrium during the estrous cycle. Theriogenology. 2003;60:1595-608. https://doi.org/10.1016/s0093-691x(03)00178-x   DOI
20 Li Y, Zhang J, Xu Y, Han Y, Jiang B, Huang L, et al. The histopathological investigation of red and blue light emitting diode on treating skin wounds in Japanese big-ear white rabbit. PLOS ONE. 2016;11:e0157898. https://doi.org/10.1371/journal.pone.0157898   DOI
21 Zhu CC, Zhang Y, Duan X, Han J, Sun SC. Toxic effects of HT-2 toxin on mouse oocytes and its possible mechanisms. Arch Toxicol. 2016;90:1495-505. https://doi.org/10.1007/s00204-015-1560-3   DOI
22 Zhang ZL, Qin P, Liu Y, Zhang LX, Guo H, Deng YL, et al. Alleviation of ischaemia-reperfusion injury by endogenous estrogen involves maintaining Bcl-2 expression via the ERα signalling pathway. Brain Res. 2017;1661:15-23. https://doi.org/10.1016/j.brainres.2017.02.004   DOI
23 Adiguzel D, Celik-Ozenci C. FoxO1 is a cell-specific core transcription factor for endometrial remodeling and homeostasis during menstrual cycle and early pregnancy. Hum Reprod Update. 2021;27:570-83. https://doi.org/10.1093/humupd/dmaa060   DOI
24 Li C, Liu Z, Wu G, Zang Z, Zhang JQ, Li X, et al. FOXO1 mediates hypoxia-induced G0/G1 arrest in ovarian somatic granulosa cells by activating the TP53INP1-p53-CDKN1A pathway. Development. 2021;148:dev199453. https://doi.org/10.1242/dev.199453   DOI
25 Sirotkin AV, Makarevich AV, Makovicky P, Kubovicova E. Ovarian, metabolic and endocrine indexes in dairy cows with different body condition scores. J Anim Feed Sci. 2013;22:316-22. https://doi.org/10.22358/jafs/65919/2013   DOI
26 Balazi A, Sirotkin AV, Foldesiova M, Makovicky P, Chrastinova L, Makovicky P, et al. Green tea can supress rabbit ovarian functions in vitro and in vivo. Theriogenology. 2019;127:72-9. https://doi.org/10.1016/j.theriogenology.2019.01.010   DOI
27 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262   DOI
28 Salehpour F, Mahmoudi J, Kamari F, Sadigh-Eteghad S, Rasta SH, Hamblin MR. Brain photobiomodulation therapy: a narrative review. Mol Neurobiol. 2018;55:6601-36. https://doi.org/10.1007/s12035-017-0852-4   DOI
29 Wu Y, Zhao A, Qin Y. Effect of lighting schedule, intensity, and colour on reproductive performance of rabbit does. World Rabbit Sci. 2021;29:59-64. https://doi.org/10.4995/wrs.2021.14623   DOI
30 Szendro Z, Gerencser Z, McNitt JI, Matics Z. Effect of lighting on rabbits and its role in rabbit production: a review. Livest Sci. 2016;183:12-8. https://doi.org/10.1016/j.livsci.2015.11.012   DOI