• Title/Summary/Keyword: femA

Search Result 5,804, Processing Time 0.046 seconds

F.E.M for Analysis of Magnetic Circuits with thin Magnetic Materials (얇은 자성체를 갖는 자기회로의 자장해석을 위한 유한요소법)

  • Kim, Kwon-Sik;Lee, Joon-Ho;Lee, Ki-Sik;Lee, Bok-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.573-576
    • /
    • 1992
  • This paper presents a method, which couples the boundary integral terms in the thin magnetic materials with standard FEM used to analyze the rest of it, for analyzing the magnetic fields. The proposed method retains the sparsity and symmetry of the final system matrix, the merits of standard FEM and eliminates the need for fininte elements in the thin magnetic materials, thereby reducing necessary capacity of computer memory and computing time. To verify the usefulness of the proposed alogorithmn, an examples, coil with source currents and thin magnetic materials, is chosen and analyzed. the results are compared with those of the standard FEM by coarse mesh and the proposed method, using standard FEM by fine mesh as a reference.

  • PDF

The torque calculation method of a permanent magnet spherical motor (영구 자석형 구형 모터의 토크 계산 방법)

  • Cho, In-Hae;Kang, Dong-Woo;Go, Sung-Chul;Lee, Jae-Jun;Won, Sung-Hong;Kim, Sol;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.706_707
    • /
    • 2009
  • This paper presents the torque calculation method of a permanent magnet spherical motor. To calculate the torque of the spherical motor by using finite element method (FEM), 3-dimensional FEM must be used. However since it spends too much time and memory in using 3-D FEM, the easier torque calculation method was presented. In this method, it is very important to get the approximation function of the torque profile curve; the authors present the approximation method of the torque profile curve. This paper shows the torque calculation result coming closer to the torque by 3-D FEM.

  • PDF

Optimum Design for Static Torque Characteristics of Claw-Poles PM Stepping Motor Using Pattern Search Algorithm and 3-Dimension Finite Element Method (3차원 유한요소법과 패턴 탐색 알고리즘을 이용한 영구자석형 클로우폴 스테핑 모터의 정토크 특성 최적설계)

  • Cho, Su-Yeon;Ham, Sang-Hwan;Bae, Jae-Nam;Park, Hyun-Jong;Won, Sung-Hong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.670_671
    • /
    • 2009
  • This paper presents a optimum design process for static torque characteristics of the Claw-Poles PM Stepping Motor(CPSM). Since the shape of CPSM changes along with axial direction, CPSM should only be analyzed by 3D-FEM. But 3D-FEM needs too much computation time and computer resources. Therefore, it is essential to reduce the number of 3D-FEM analysis models. In this paper, two design factors which affect the static torque characteristics of CPSM were selected. Optimum design process was able to make progress by using Pattern Search Algorithm and 3D-FEM. Finally, optimized model was compared with a conventional model.

  • PDF

A Dynamic Analysis of Valve Mechanism of High-Speed Engine Using FEM (유한요소법을 이요한 고속엔진 밸브 메카니즘의 동적해석)

  • 임상준;이기수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.513-516
    • /
    • 2000
  • This paper presents the analytical studies on the stress and strain of driven valve system of internal combustion engines. The stress and strain is predict using FEM. The particular interest is the dynamic strain at a specific point of the valve and valve seat. Cam and follower Assuming that one rigid surface. This study forced the effects changing Young's modulus and density of valve and valve seat contact area. It supports that the indirect method using FEM is reliable for prediction the actual displacement, stress and strain in the valve system.

  • PDF

A Study on the Vibration Characteristics of Laminated Composite Materials Rectangular Plates (적층 복합재료 사각판의 진동특성에 관한 연구)

  • 허동현;신귀수;정인성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.486-490
    • /
    • 1997
  • Composite materials have varios complicated characteristics to the ply materials, ply orientations, ply stacking sequences and boundary conditions. Therefore, it is difficult to analysis composite materials. For efficient use of composite materials in engineering applications the dynamic behavior, that is, natural frequencies, nodal patterns should be informed. This study presents the experimental and FEM results for the free vibration of symmetrically and antisymmetrically laminated composite and hybrid composite rectangular plates. In order to demonstrate the validity of the experiment, FEM analysis using ANSYS was performed and natural frequencies experimentally obtined is compared with that calculated by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.

  • PDF

Analysis of Partial Discharge Signal Propagation Characteristics in GIS using FEM (FEM을 이용한 GIS내 부분방전 신호의 전파특성 해석)

  • Kim Jae-Chul;Lee Do-Hoon;Song Seung-Yeop;Kim Kwang-Whoa
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.624-629
    • /
    • 2004
  • The UHF electromagnetic waves excited by PD pulses propagate along the GIS busbar not only TEM mode, but also TE and TM mode. Generally the waves detected by the UHF sensors are those of high order modes and such waves can only propagate higher than cut-off frequency. In this paper, the cut-off frequency of 362[kV] GIS for each modes is computed and the electromagnetic field of each propagation modes is simulated by FEM(Finite Element Method) program. Frequency band of each TEmn/TMmn modes was determinated by simulation results and was discussed optimal position of UHF sensor from this results.

Analysis of Arc Behavior as a Function of Twisting Angle Between Contacts in Spiral Type VI by Means of Arc Image, Arc Voltage and FEM (아크이미지, 아크전압과 유한요소해석을 통한 나선형 VI 전극 간의 비틀림 각도에 따른 아크거동분석)

  • Kim, Byoung-Chul;Park, Hong-Tae;Son, Jin-Woo;Lim, Kee-Joe
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.333-341
    • /
    • 2009
  • In this paper arc behavior in spiral type vacuum interrupter(VI) was analyzed by means of arc images, arc voltages and finite element method(FEM). As a result of experiment, the difference of arc voltage was observed under different twisting angles. It was found that the reason of the difference was the difference of arc resistance from simultaneous analysis of arc images and arc voltages. and the difference of arc resistance was explained by Lorentz force calculation with FEM. And the results of calculation were sufficient to explain the experimental results.

Simulation of A Condensor Motor Using an External Circuit and FEM (외부회로 방정식과 FEM을 이용한 Condensor Motor의 특성해석)

  • Park, Gun-Woo;Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.36-38
    • /
    • 1995
  • A Single-phase condensor motor is analyzed by FEM coupled with external circuit. The finite element analysis is based on the solution of combined equation both the magnetic field equation from the Maxwell's and the circuit equations of the stator and rotor circuit. The external circuit of the single-phase condensor motor to be analyzed is described using FLUX2D and linked to multiple FEM regions. The simulated results show that the condensor motor analysis with external circuit has good agreement with those of test results.

  • PDF

A Study on the Forging Prototype Manufacture of Aluminium 7050 Alloys (Al7050합금의 단조 시제품 제작에 관한 연구)

  • Kang, Seong-Ki;Lee, Jea-Kun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.39-45
    • /
    • 2012
  • In this paper, process conditions are investigated for elimination of the grain coarsening and improved material flow during forging process by both of experiments and FEM analysis. Particular interest has been given to understand role of preform shape on the grain coarsening behavior and magnitude of the hammer forging load. As the results of FEM simulation by using DEFORM-3D, the simulated forging loads were 2,200ton in the case of a machined bar which is machined from 65mm to 60mm diameter, and below 1,900ton in the case of machined preform, respectively. The use of preform has been beneficial for reduction of the forging load and elimination of the grain coarsening. However, in the case of as received bar and the round bar, which was machined to 2.5mm thickness in surface layer, some degree of local grain coarsening behavior has been observed. The optimized preform shape could be properly designed by applying the FEM simulation.

Analysis on Shear Stress During Drawing Process of Pearlite Structure of High Carbon Steel (고탄소강 펄라이트 조직의 인발 공정 시 전단응력의 해석)

  • Kim H. S.;Kim B. M.;Bae C. M.;Lee C. Y,
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.93-96
    • /
    • 2004
  • This paper presents a study on defects in pearlite lamella structure of high carbon steel by means of finite-element method(FEM) simulation. High-carbon pearlite steel wire is characterized by its nano-sized microstructure feature of alternation ferrite and cementite. The likely fatigue crack is located on interface of the lamella structure where the maximum amplitude of the longitudinal shear stress and transverse shear stress was calculated during cyclic loading. The FEM is proposed for maximum shear stress from loading of lamella structure, and a method is predicted to analyze the likely fatigue crack generation. It is possible to obtain the important basic data which can be guaranteed in the ductility of high carbon steel wire by using FEM simulation.

  • PDF