• 제목/요약/키워드: feedback-linearization

검색결과 341건 처리시간 0.029초

Robust integral tracking control of Magnetic Levitating System via feedback linearization

  • Wonkee Son;Kim, Yongjun;Park, Jinyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.48.2-48
    • /
    • 2001
  • This paper deals with robust integral tracking control problem based on Lyapunov method via FL(Feedback Linearization) in order to solve a reference tracking problem of nonlinear system with parameter uncertainties. To overcome a restrictive matching condition the uncertainties is characterized in a suitable form. The design procedure which combine FL and LMIs(Linear Matrix Inequalities) based on Lyapunov method to achieve the robust performance and stability is developed. Finally, the performance of proposed controller is demonstrated via simulation of a linear reference tracking problem in the MLS(Magnetic levitating System).

  • PDF

A CLASS OF ASYMPTOTICALLY STABILIZING STATE FEEDBACK FOR UNCERTAIN NONLINEAR SYSTEMS

  • Hashimoto, Yuuki;Wu, Hansheng;Mizukami, Koichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.271-274
    • /
    • 1995
  • This paper is concerned with the problem of robust stabilization of uncertain single-input and single-output nonlinear systems. Based on the input/output linearization approach for nonlinear state feedback synthesis in conjunction with Lyapunov methods, a stabilizing state feedback controller is proposed. Compared with the controllers reported in the control literature, instead of uniform ultimate boudedness, the controller proposed in this paper can guarantee uniform asymptotic stability of nonlinear systems in the presence of uncertainties. The required information about uncertain dynamics in the system is only that the uncertainties are bounded in Euclidean norm by known functions of the system state.

  • PDF

IM의 궤환 선형화에 대한 연구 (A study on the feedback linearization for Induction Motor)

  • 임재훈;장기열;박승규;안호균;곽군평
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1650-1651
    • /
    • 2007
  • This paper presents a novel nonlinear speed control strategy for induction motor utilizing exact feedback linearization with states feedback. The speed and flux control loops utilize nonlinear feedback which eliminates the need for tuning, while ordinary proportional-integral controllers are used to control the stator current of d-axis the speed. The control scheme is derived in rotor field coordinates and employs an appropriate estimator for estimation of the rotor flux angle, flux magnitude.

  • PDF

LMI를 기반으로 한 퍼지 피드백 선형화 제어 시스템의 L2 강인 안정성 해석 (LMI Based L2 Robust Stability Analysis and Design of Fuzzy Feedback Linearization Control Systems)

  • 현창호;박창우;박민용
    • 한국지능시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.582-589
    • /
    • 2003
  • 본 논문에서는 퍼지 피드백 선형화 제어 시스템에 대한 강인 안정성 해석과 제어기 설계에 대해서 말하고 있다. 제어 대상인 비선형 시스템을 모델링 하는데 있어서 Takagi-Sugeno (TS) 퍼지 모델 기법을 이용하였고, 이때 발생할 수 있는 모델 불화실성과 외란에 대해 그것의 최대 최소 범위를 안다고 가정하였다. 모델링을 통해서 얻어진 폐구간 시스템에 대한 안정성 판별은 Diagonal Norm based Linear Differential Inclusions (DNLDI) 구조를 이용하여 $L_2$ 강인 안정성 해석을 하였다. 또한, 퍼지 피드백 선형화 제어 시스템을 안정화 시키는 최대 이득을 얻기 위하여 LMI 최적화 계산법을 기반으로한 수치 해석법을 제시하였다. 제안된 방법의 효과를 확인하기 위해서 강인 안정성 해석 및 제어 설계에 대한 간단한 모의실험을 하였다.

Equivalent classes of decouplable and controllable linear systems

  • Ha, In-Joong;Lee, Sung-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.405-412
    • /
    • 1992
  • The problem we consider in this paper is more demanding than the problem of input-output linearization with state equivalence recently solved by Cheng, Isidori, Respondek, and Tarn. We request that the MIMO nonlinear system, for which the problem of input-output linearization with state-equivalence is solvable, can be decoupled. In exchange for further requirement like this, our problem produces more usable and informative results than the problem of input-output linearization with state-equivalence. We present the necessary and sufficient conditions for our problem to be solvable. We characterize each of the nonlinear systems satisfying these conditions by a set of parameters which are invariant under the group action of state feedback and transformation. Using this set of parameters, we can determine directly the unique one, among the canonical forms of decouplable and controllable linear systems, to which a nonlinear system can be transformed via appropriate state feedback and transformation. Finally, we present the necessary and sufficient conditions for our problem to be solvable with internal stability, that is, for stable decoupling.

  • PDF

Sliding Mode Control based on Disturbance Observer for Magnetic Levitation Positioning Stage

  • Zhang, Shansi;Ma, Shuyuan;Wang, Weiming
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2116-2124
    • /
    • 2018
  • Magnetic levitation system with the advantages of non-contact, no friction and no wear can satisfy the requirement of high precision and high speed positioning. In this paper, magnetic levitation positioning stage which mainly consists of planar coil and HALBACH permanent magnet array and its control and driving system are designed. Magnetic levitation system is a highly nonlinear and strongly coupled complex system and its control performance can be influenced by the uncertainty and external disturbance. So exact feedback linearization method is used to realize exact linearization and decoupling, and a strategy of sliding mode control based on disturbance observer is proposed to compensate the uncertainty and external disturbance. Detailed proofs of observer's convergence property and system stability are derived. Both the simulation and experiment results verify the effectiveness of sliding mode control algorithm based on disturbance observer.

비선형 시스템의 Dynamic Feedback을 이용한 합성 (Synthesis Problems of the Nonlinear Systems Via Dynamic Feedback)

  • 이홍기;전홍태
    • 전자공학회논문지B
    • /
    • 제28B권12호
    • /
    • pp.19-26
    • /
    • 1991
  • In this paper, we give a structure algorithm for the synthesis problems of the nonlinear system via dynamic feedback. Using our algorithm, sufficient conditions for the input-output synthesis problems are discussed. The problems we consider in this paper include dynamic input-output decoupling input-output linearization, and immersion into a linear system.

  • PDF

비선형 시스템의 근사 선형화 (Approximate Linearization of Nonlinear Systems)

  • 남광희;이균경;탁민제
    • 대한전기학회논문지
    • /
    • 제40권7호
    • /
    • pp.690-695
    • /
    • 1991
  • The ability to linearize a nonlinear system by feedback and coordinate change reduces to finding an integrating factor for a one-form which is determined from the system dynamics. Utilizing Taylor series expansion of this one-form, we characterize approximate linearizabilitu. A constructive method is derived for approximate linearization up to order 2.

  • PDF

역보행 제어 형태의 궤환 선형화를 이용한 양방향 플래툰 제어 (Bidirectional Platoon Control Using Backstepping-Like Feedback Linearization)

  • 권지욱
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.410-415
    • /
    • 2013
  • This paper proposes a bidirectional platoon control law using a coupled distance error based on the backstepping-like feedback linearization control method for an interconnected mobile agent system with a string structure. Unlike the previous results where the single agent was controlled using the only own information without other agents, the proposed control law cannot show the only distance error convergence of each agent, but also the string stability of the whole system. Also, the control performances are improved by the proposed control law in spite of low performance of bidirectional control strategy in the previous results. The proposed bidirectional platoon control algorithm is based on the backstepping-like feedback linearization control method. The position errors between each agent and the preceding and the behind agents are coupled by weighted summation. By the proposed control law, the distance error of each agent can converge to zero while the string stability is guaranteed when the coupled errors can converge to zero. To this end, the back-stepping control method is employed. The pseudo velocity input is determined considering the kinematic relationship between agents and the string stability. Then, the actual dynamic control input is determined to make the actual velocity converge to the pseudo velocity input. The stability analysis and the simulation results of the proposed method are included in order to demonstrate the practical application of the proposed algorithm.

다 입력 이산 비선형 시스템의 선형화 (Linearization of the Multi-input Discrete-time Nonlinear Systems)

  • 김재현;노동휘;박순형;김용민;이홍기
    • 전자공학회논문지SC
    • /
    • 제37권1호
    • /
    • pp.30-39
    • /
    • 2000
  • 비선형 시스템의 선형화 문제는 좌표변환만에 의한 것과 좌표변환과 상태 궤환에 의한 것 등 크게 두 가지로 나눌 수 있다. 본 논문에서는 다 입력 이산 비선형 시스템에 대하여 이 두 가지 문제에 대한 필요충분 조건을 얻는다. 또한, 선형화하는 좌표변환과 궤환을 구하는 방법을 증명과정에서 제시한다.

  • PDF