• Title/Summary/Keyword: feedback inhibition

Search Result 64, Processing Time 0.033 seconds

Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in Escherichia coli

  • Zhou, Shenghu;Hao, Tingting;Zhou, Jingwen
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1574-1582
    • /
    • 2020
  • Flavonoids have diverse biological functions in human health. All flavonoids contain a common 2-phenyl chromone structure (C6-C3-C6) as a scaffold. Hence, in using such a scaffold, plenty of high-value-added flavonoids can be synthesized by chemical or biological catalyzation approaches. (2S)-Naringenin is one of the most commonly used flavonoid scaffolds. However, biosynthesizing (2S)-naringenin has been restricted not only by low production but also by the expensive precursors and inducers that are used. Herein, we established an induction-free system to de novo biosynthesize (2S)-naringenin in Escherichia coli. The tyrosine synthesis pathway was enhanced by overexpressing feedback inhibition-resistant genes (aroGfbr and tyrAfbr) and knocking out a repressor gene (tyrR). After optimizing the fermentation medium and conditions, we found that glycerol, glucose, fatty acids, potassium acetate, temperature, and initial pH are important for producing (2S)-naringenin. Using the optimum fermentation medium and conditions, our best strain, Nar-17LM1, could produce 588 mg/l (2S)-naringenin from glucose in a 5-L bioreactor, the highest titer reported to date in E. coli.

Purification and Characterization of Acetolactate Synthase from Barley

  • Chong, Chom-Kyu;Chang, Soo-Ik;Choi, Jung-Do
    • BMB Reports
    • /
    • v.30 no.4
    • /
    • pp.274-279
    • /
    • 1997
  • Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of branchedchain amino acids, valine, leucine, and isoleucine. ALS is the target site for several structually diverse classes of herbicides including sulfonylureas, imidazolinones. and triazolopyrimidines. We have purified ALS from etiolated barley shoots to homogeneity. The five major purification steps are ammonium sulfate fractionation, DEAE anion exchange, hydroxylapatite, Bio-Gel A gel filtration, and low pressure Mono-Q chrornatoqraphy. Approximately 170-fold purification was achieved and the yield was 0.45% of initial activity in the crude extract. Both SDS-PAGE and Western blot analysis showed a single polypeptide of ALS with an apparent molecular mass of 64 kDa. The result of nondenaturing gel electrophoresis with activity staining indicated that the molecular mass of its native form is approximately 225 to 250 kDa. The values of $K_m$ for pyruvate. pl. and optimum pH of ALS were determined to be 2.0 mM, 5.2. and 7.0. respectively Feedback inhibition studies showed that ALS is more susceptible to leucine than valine. And $IC_{50}$ value of Cadre, a class of irnidazolinones, is about $1.5\mu{M}$ for ALS.

  • PDF

Spry2 does not directly modulate Raf-1 kinase activity in v-Ha-ras-transformed NIH 3T3 fibroblasts

  • Ahn, Jun-Ho;Eum, Ki-Hwan;Lee, Michael
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.205-211
    • /
    • 2010
  • Sprouty (Spry) proteins have previously been suggested as negative regulators of the MAPK pathway through interaction with Raf-1. However, the molecular basis of this inhibition has not been elucidated. In this study, we used cells expressing FLAGtagged Raf-1 with point mutations at known phosphorylation sites to reveal that activation of Raf-1 mutants does not correlate with their degree of interaction with Spry2. The association of Raf-1 with Spry2 in intact cells was further corroborated by immunofluorescence colocalization. Additionally, there was no significant change observed in the strength of interaction between Raf-1 mutants and Spry2 after paclitaxel treatment despite differences in the activation levels of these mutants. Thus, our study provides the evidence that Spry2 does not directly regulate Raf-1 kinase activity, but instead acts as a scaffolding protein that assists interactions between Raf-1 kinase and its direct regulators.

Regulation of Gene Expression for Amino Acid Biosynthesis in the Yeast, Sacchromyces cerevisiae

  • Lea, Ho Zoo
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1995.10b
    • /
    • pp.82-82
    • /
    • 1995
  • Regulation of enzyme synthesis by transcriptional and translational control systems provides rather stable adaptation to change of amino acid level in the growth medium, while manipulation of enzyme activity through endproduct feedback inhibition represents rather short-term and reversible ways of adjusting metabolic fluctuation of amino acid level. Various control mechanisms interplay to regulate genes encoding enzymes for amino acid biosynthesis in the yeast, Sacchromyces cerevisiae. When amino acids are in short supply, genes under a cross-pathway regulatory mechanism Or general amino acid control (general control) increase their action, in which Gcn4p is the major positive regulator of gene expression. When cells are cultured in minimal medium, basal level expression is also regulated by supplementary control elements, where inorganic phosphate level is additionally involved. Most of amino acid biosynthetic genes are also regulated by the level of endproduct of the pathway. This pathway-specific regulatory mechanism is called specific amino acid control (specific controD, under which gene expression is reduced when endproduct is present in the medium. Derepression of a gene through general control can be usually overridden by repression through specific control, where the endproduct level of that particular pathway is high and not limiting. In this presentation, regulatory factors for basal level expression and general control of yeast amino acid biosynthesis will be discussed, m addition to pathway-specific repression patterns and interaction between CrOSS- and specific-control mechanisms. Preliminary results are also presented from the investigation of the cloned genes in the threonine biosynthetic pathway of the yeast. yeast.

  • PDF

CRISPR-Driven Genome Engineering for Chorismate- and Anthranilate-Accumulating Corynebacterium Cell Factories

  • Hye-Jin Kim;Si-Sun Choi;Eung-Soo Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1370-1375
    • /
    • 2023
  • In this study, we aimed to enhance the accumulation of chorismate (CHR) and anthranilate (ANT), key intermediates in the shikimate pathway, by modifying a shikimate over-producing recombinant strain of Corynebacterium glutamicum [19]. To achieve this, we utilized a CRISPR-driven genome engineering approach to compensate for the deletion of shikimate kinase (AroK) as well as ANT synthases (TrpEG) and ANT phosphoribosyltransferase (TrpD). In addition, we inhibited the CHR metabolic pathway to induce CHR accumulation. Further, to optimize the shikimate pathway, we overexpressed feedback inhibition-resistant Escherichia coli AroG and AroH genes, as well as C. glutamicum AroF and AroB genes. We also overexpressed QsuC and substituted shikimate dehydrogenase (AroE). In parallel, we optimized the carbon metabolism pathway by deleting the gntR family transcriptional regulator (IolR) and overexpressing polyphosphate/ATP-dependent glucokinase (PpgK) and glucose kinase (Glk). Moreover, acetate kinase (Ack) and phosphotransacetylase (Pta) were eliminated. Through our CRISPR-driven genome re-design approach, we successfully generated C. glutamicum cell factories capable of producing up to 0.48 g/l and 0.9 g/l of CHR and ANT in 1.3 ml miniature culture systems, respectively. These findings highlight the efficacy of our rational cell factory design strategy in C. glutamicum, which provides a robust platform technology for developing high-producing strains that synthesize valuable aromatic compounds, particularly those derived from the shikimate pathway metabolites.

Effects of Korea Red Ginseng Total Saponin on Repeated Unpredictable Stress-induced Changes of Proliferation of Neural Progenitor Cells and BDNF mRNA Expression in Adult Rat Hippocampus (반복 스트레스에 의한 흰쥐 해마조직내 신경전구세포의 생성과 brain-derived neurotrophic factor (BDNF) mRNA 발현 변동에 미치는 고려홍삼 사포닌의 반복 투여 효과)

  • Kim, Dong-Hoon;Kwak, Kyu-Hwan;Lee, Kuem-Ju;Kim, Sung-Jin;Shin, You-Chan;Chun, Boe-Gwun;Shin, Kyung-Ho
    • Journal of Ginseng Research
    • /
    • v.28 no.2
    • /
    • pp.94-103
    • /
    • 2004
  • Korean red ginseng is known to have anti-stress and memory enhancing effects. Recent studies suggested that stress-induced inhibition of adult neurogenesis in hippocampus may contribute, in part, to decreased negative feedback inhibition of HPA axis. In order to elucidate the mechanism of Korean red ginseng in anti-stress and memory enhancing effects, we observed the effects of repeated treatment of Korean red ginseng total saponin (GTS, 50 mg/kg, i.p.) in response to repeated unpredictable stress for 10 days. Male Sprague-Dawley rats (230 - 260 g) received with either GTS (50 mg/kg, i.p.) or vehicle (1 ml/kg, i.p.) 1 h before stress for 10 days. Rats were injected with bromodeoxyuridine (BrdU, 50 mg/kg, i.p.) 16-18 he after last stress procedure, and were sacrificed 2 hr later by perfusion. Immunohistochemistry of BrdU was done to measure proliferation of neural progenitor cells in hippocampus, which was used as an index of neurogenesis. Repeated GTS treatment for 10 days increased neurogenesis in subgranular zone area of dentate gyrus (SGZ), but not hilus, compared with vehicle-treated rats. Repeated unpredictable stress did not affect the neurogenesis compared with controls, while repeated GTS treatment increased neurogenesis in SGZ in repeated unpredictable stress-exposed group. BDNF mRNA was also measured in subregions of hippocampus by in situ hybridization. BDNF mRNA expression in CA3 and CA1 pyramidal cell layer was increased by repeated GTS treatment but not in dentate granule cell layer. Repeated unpredictable stresses significantly decreased BDNF mRNA expression in all subregions of hippocampus, but repeated GTS treatment did not prevent stress-induced BDNF mRNA downregulation. Given that repeated GTS treatment increased proliferation of neural progenitor cells in repeated unpredictable stress-exposed rats in the presence of decreased BDNF mRNA expression in dentate granule cell layer, it raise the possibility that BDNF may not playa significant role in GTS-mediated increase of neurogenesis in adult rat hippocampus. Also, these results suggest that repeated GTS treatment increased neurogenesis of SGZ and BDNF mRNA expression, which may account for memory enhancing effect of Korean red ginseng. In addition, repeated GTS treatment appears not to have anti-stress effects in terms of neurotrophin, but GTS-mediated increase of neurogenesis in hippocampus may contribute to increase negative feedback inhibition of HPA axis.

Optimization of the Reaction Conditions for (R)-Phenyl-1,2-ethanediol Preparation by Recombinant Epoxide Hydrolase from Caulobacter crescentus (재조합 Caulobacter crescentus 에폭사이드 가수분해효소를 이용한 광학활성 Diol 제조 조건의 최적화)

  • Lee, Ok-Kyung;Kim, Hee-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.285-291
    • /
    • 2007
  • Enantioconvergent hydrolysis process for the preparation of chiral diol from racemic epoxides by using the recombinant Caulobacter crescentus epoxide hydrolase (CcEH) in Escherichia coli BL21 (DE3) was optimized. For the optimization, the effects of detergent, temperature and product inhibition on the enantiopurity and the yield of diol were investigated. (R)-phenyl-1,2-ethanediol with 92% enantiomeric excess and 56% yield from 20 mM racemic styrene oxide was obtained by using the recombinant CcEH at the optimal condition of $10^{\circ}C$ and the addition of 2% (w/v) Tween 80. At 50 mM racemic styrene oxide was used as a substrate, (R)-phenyl-1,2-ethanediol was obtained with 87% enantiomeric excess and 77% yield. Racemic phenyl-1,2-ethanediol, (R)-phenyl-1,2-ethanediol and (S)-phenyl-1,2-ethanediol dramatically inhibited the hydrolytic activity of the recombinant CcEH. These results suggested that another EH with the regioselectivity on ${\beta}$-position of (R)-enantiomer and without feedback inhibition by products would be needed as the partner EH of C. crescentus EH.

Endoplasmic Reticulum Ca2+ Store: Regulation of Ca2+ Release and Reuptake by Intracellular and Extracellular Ca2+ in Pancreatic Acinar Cells

  • Kang, Yun Kyung;Park, Myoung Kyu
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.268-278
    • /
    • 2005
  • We investigated the effect of cytosolic and extracellular $Ca^{2+}$ on $Ca^{2+}$ signals in pancreatic acinar cells by measuring $Ca^{2+}$ concentration in the cytosol($[Ca^{2+}]_c$) and in the lumen of the ER($[Ca^{2+}]_{Lu}$). To control buffers and dye in the cytosol, a patch-clamp microelectrode was employed. Acetylcholine released $Ca^{2+}$ mainly from the basolateral ER-rich part of the cell. The rate of $Ca^{2+}$ release from the ER was highly sensitive to the buffering of $[Ca^{2+}]_c$ whereas ER $Ca^{2+}$ refilling was enhanced by supplying free $Ca^{2+}$ to the cytosol with $[Ca^{2+}]_c$ clamped at resting levels with a patch pipette containing 10 mM BAPTA and 2 mM $Ca^{2+}$. Elevation of extracellular $Ca^{2+}$ to 10 mM from 1 mM raised resting $[Ca^{2+}]_c$ slightly and often generated $[Ca^{2+}]_c$ oscillations in single or clustered cells. Although pancreatic acinar cells are reported to have extracellular $Ca^{2+}$-sensing receptors linked to phospholipase C that mobilize $Ca^{2+}$ from the ER, exposure of cells to 10 mM $Ca^{2+}$ did not decrease $[Ca^{2+}]_{Lu}$ but rather raised it. From these findings we conclude that 1) ER $Ca^{2+}$ release is strictly regulated by feedback inhibition of $[Ca^{2+}]_c$, 2) ER $Ca^{2+}$ refilling is determined by the rate of $Ca^{2+}$ influx and occurs mainly in the tiny subplasmalemmal spaces, 3) extracellular $Ca^{2+}$-induced $[Ca^{2+}]_c$ oscillations appear to be triggered not by activation of extracellular $Ca^{2+}$-sensing receptors but by the ER sensitised by elevated $[Ca^{2+}]_c$ and $[Ca^{2+}]_{Lu}$.

TRAIL Suppresses Human Breast Cancer Cell Migration via MADD/CXCR7

  • Wang, Rui;Li, Jin-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2751-2756
    • /
    • 2015
  • Background: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can specifically induce apoptosis limited to various cancer cells, so this reagent is considered a promising medicine for cancer therapy. TRAIL also exerts effects on non-apoptotic signals, relevant to processes such as metastasis, autophagy and proliferation in cancer cells. However, the mechanisms of TRAIL-regulated non-apoptotic signals are unclear. The purpose of this study was to investigate MADD/CXCR7 effects in TRAIL-mediated breast cancer cell migration. Materials and Methods: The ability of MADD/CXCR7 to regulate MVP signaling in TRAIL-mediated breast cancer cells migration was evaluated by transwell migration assay, quantitative RT-PCR, Western blotting and knock down experiments. Results: In this study, we found that treatment with TRAIL resulted in induced expression levels of MADD and CXCR7 in breast cancer cells. Knock down of MADD followed by treatment with TRAIL resulted in increased cell migration compared to either treatment alone. Similarly, through overexpression and knockdown experiments, we demonstrated that CXCR7 also positively regulated TRAIL-inhibited migration. Surprisingly, knock down of MADD lead to inhibition of TRAIL-induced CXCR7 mRNA and protein expression and overexpression of CXCR7 lead to the reduction of MADD expression, indicating that MADD is an upstream regulatory factor of TRAIL-triggered CXCR7 production and a negative feedback mechanism between MADD and CXCR7. Furthermore, we showed that CXCR7 is involved in MADD-inhibited migration in breast cancer cells. Conclusions: Our work defined a novel signaling pathway implicated in the control of breast cancer migration.

Neurobiological Pathophysiology of Attention Deficit Hyperactivity Disorder (주의력결핍 과잉행동장애의 신경생물학적 병태생리)

  • Park, Hyung Bae;Joo, Yeol
    • Journal of Yeungnam Medical Science
    • /
    • v.17 no.2
    • /
    • pp.108-122
    • /
    • 2000
  • Background: Models of attention deficit hyperactivity disorder(ADHD) that have proposed a hypodopaminergic state resulting in hypofunction of the prefrontal circuitry have assumed a unitary dopamine system, which largely ignores the distinct functional differences between mesocortical dopamine system and nigrostriatal dopamine system. Purpose: The author's goal was to develop a pathophysiological model for ADHD with greater explanotory power than dopaminergic hypofunction hypothesis in prefronal circuitry. Material and Methods: Published clinical findings on ADHD were integrated with data from genetic, pharmacological, neuroimaging studies in human and animals. Results: Molecular genetic studies suggest that three genes may increase the susceptibility to ADHD. The three candidate genes associated with ADHD are each involved in dopaminergic function, and this consistent with the neurobiologic studies implicating catecholamines in the etiology of ADHD. Pharmacological data also provide compelling support for dopamine and noradrenergic hypothesis of ADHD. Neuroimaging studies lend substantial support for the hypothesis that right-sided abnormalities of prefrontal-basal ganglia circuit would be found in ADHD. Conclusions: The present hypothesis takes advantage of the major differences between the two pertinent dopamine systems. Mesocortical dopamine system, which largely lacks inhibitory autoreceptors, is ideally positioned to regulate cortical inputs, thus improving the signal-to-noise ratio for biologically valued signals. In this circuit, therapeutic doses of stimulants are hypothesized to increase postsynaptic dopamine effects and enhance executive functions. By contrast, symptoms of hyperactivity/impulsivity in ADHD are hypothesized to be associated with relative overactivity of nigrostriatal circuit. This nigrostriatal circuit is tightly regulated by inhibitory autoreceptoors as well as by long distance feedback from the cortex, and slow diffusion of therapeutic doses of stimulant via oral administration is hypothesized to produce a net inhibition of dopaminergic neurotransmission and improves hyperactivity.

  • PDF