Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.3.205

Spry2 does not directly modulate Raf-1 kinase activity in v-Ha-ras-transformed NIH 3T3 fibroblasts  

Ahn, Jun-Ho (Department of Biology, College of Natural Sciences, University of Incheon)
Eum, Ki-Hwan (Department of Biology, College of Natural Sciences, University of Incheon)
Lee, Michael (Department of Biology, College of Natural Sciences, University of Incheon)
Publication Information
BMB Reports / v.43, no.3, 2010 , pp. 205-211 More about this Journal
Abstract
Sprouty (Spry) proteins have previously been suggested as negative regulators of the MAPK pathway through interaction with Raf-1. However, the molecular basis of this inhibition has not been elucidated. In this study, we used cells expressing FLAGtagged Raf-1 with point mutations at known phosphorylation sites to reveal that activation of Raf-1 mutants does not correlate with their degree of interaction with Spry2. The association of Raf-1 with Spry2 in intact cells was further corroborated by immunofluorescence colocalization. Additionally, there was no significant change observed in the strength of interaction between Raf-1 mutants and Spry2 after paclitaxel treatment despite differences in the activation levels of these mutants. Thus, our study provides the evidence that Spry2 does not directly regulate Raf-1 kinase activity, but instead acts as a scaffolding protein that assists interactions between Raf-1 kinase and its direct regulators.
Keywords
Feedback regulation; Paclitaxel; Protein interaction; Raf-1 kinase; Spry2;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Li, X., Wheldon, L. and Heath, J. K. (2003) Sprouty: a controversial role in receptor tyrosine kinase signalling pathways. Biochem. Soc. Trans. 31, 1445-1446   DOI   ScienceOn
2 Mason, J. M., Morrison, D. J., Basson, M. A. and Licht, J. D. (2006) Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol. 16, 45-54   DOI   ScienceOn
3 Dhillon, A. S. and Kolch, W. (2002) Untying the regulation of the Raf-1 kinase. Arch. Biochem. Biophys. 404, 3-9   DOI   ScienceOn
4 Reich, A., Sapir, A. and Shilo, B. (1999) Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 126, 4139-4147   PUBMED
5 Lito, P., Mets, B. D., Kleff, S., O'Reilly, S., Maher, V. M. and McCormick, J. J. (2008) Evidence that sprouty 2 is necessary for sarcoma formation by H-Ras oncogenetransformed human fibroblasts. J. Biol. Chem. 283, 2002-2009   DOI   ScienceOn
6 Lee, M. (2006) Raf-1 kinase activation is uncoupled from downstream MEK/ERK pathway in cells treated with Src tyrosine kinase inhibitor PP2. Biochem. Biophys. Res. Commun. 350, 450-456   DOI   PUBMED   ScienceOn
7 Fabian, J. R., Daar, I. O. and Morrison, D. K. (1993) Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol. Cell. Biol. 13, 7170-7179   DOI   PUBMED   ScienceOn
8 Marshall, M. S. (1995) Ras target proteins in eucaryotic cells. FASEB J. 9, 1311-1318   DOI   PUBMED
9 Improta-Brears, T., Ghosh, S. and Bell, R. M. (1999) Mutational analysis of Raf-1 cysteine rich domain: requirement for a cluster of basic aminoacids for interaction with phosphatidylserine. J. Cell Biochem. 198, 171-178   DOI   ScienceOn
10 Chandramouli, S., Yu, C. Y., Yusoff, P., Lao, D. H., Leong, H. F., Mizuno, K. and Guy, G. R. (2008) Tesk1 interacts with Spry2 to abrogate its inhibition of ERK phosphorylation downstream of receptor tyrosine kinase signaling. J. Biol. Chem. 283, 1679-1691   DOI   ScienceOn
11 Lao, D. H., Yusoff, P., Chandramouli, S., Philp, R. J., Fong, C. W., Jackson, R. A., Saw, T. Y., Yu, C. Y. and Guy, G. R. (2007) Direct binding of PP2A to Sprouty2 and phosphorylation changes are a prerequisite for ERK inhibition downstream of fibroblast growth factor receptor stimulation. J. Biol. Chem. 282, 9117-9126   DOI   ScienceOn
12 Impagnatiello, M. A., Weitzer, S., Gannon, G., Compagni, A., Cotten, M. and Christofori, G. (2001) Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J. Cell. Biol. 152, 1087-1098   DOI   ScienceOn
13 Park, Y. P., Choi, S. C., Kim, B. Y., Kim, J. T., Song, E. Y., Kang, S. H., Yoon, D. Y., Paik, S. G., Kim, K. D., Kim, J. W. and Lee, H. G. (2008) Induction of Mac-2BP by nerve growth factor is regulated by the PI3K/Akt/NF-kB-dependent pathway in the HEK293 cell line. BMB Rep. 41, 784-789   DOI   PUBMED   ScienceOn
14 Kim, H. J. and Bar-Sagi, D. (2004) Modulation of signalling by Sprouty: a developing story. Nat. Rev. Mol. Cell Biol. 5, 441-450
15 Sasaki, A., Taketomi, T., Kato, R., Saeki, K., Nonami, A., Sasaki, M., Kuriyama, M., Saito, N., Shibuya, M. and Yoshimura, A. (2003) Mammalian Sprouty4 suppresses Rasindependent ERK activation by binding to Raf1. Nat. Cell. Biol. 5, 427-432   DOI   ScienceOn
16 Kolch, W. (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J. 351, 289-305   DOI   ScienceOn
17 Ahn, J. H., Eum, K. H. and Lee, M. (2009) The enhancement of Raf-1 kinase activity by knockdown of Spry2 is associated with high sensitivity to paclitaxel in v-Ha-ras-transformed NIH 3T3 fibroblasts. Mol. Cell. Biochem. 332, 189-197   DOI   PUBMED
18 Kolch, W., Heidecker, G., Kochs, G., Hummel, R., Vahidi, H., Mischak, H., Finkenzeller, G., Marme, D. and Rapp, U. R. (1993) Protein kinase C alpha activates Raf-1 by direct phosphorylation. Nature 364, 249-252   DOI   PUBMED   ScienceOn
19 Lee, A. C., Fenster, B. E., Ito, H., Takeda, K., Bae, N. S., Hirai, T., Yu, Z. X., Ferrans, V. J., Howard, B. H. and Finkel, T. (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 274, 7936-7940   DOI   ScienceOn
20 Yusoff, P., Lao, D. H., Ong, S. H., Wong, E. S. M., Lim, J., Lo, T. L., Leong, F., Fong, C. W. and Guy, G. R. (2002) Sprouty2 inhibits the Ras/MAP Kinase pathway by inhibiting the activation of Raf. J. Biol. Chem. 277, 3195-3201   DOI   ScienceOn
21 Blagosklonny, M. V., Giannakakou, P., El-Deiry, W. S., Kingston, D. G., Higgs, P. I., Neckers, L. and Fojo, T. (1997) Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res. 57, 130-135   PUBMED
22 Diaz, B., Barnard, D., Filson, A., MacDonald, S., King, A. and Marshall, M. (1997) Phosphorylation of Raf-1 serine 338-serine 339 is an essential regulatory event for Ras-dependent activation and biological signaling. Mol. Cell. Biol. 17, 4509-4516   DOI   PUBMED
23 Luo, Z., Diaz, B., Marshall, M. S. and Avruch, J. (1997) An intact Raf zinc finger is required for optimal binding to processed Ras and for Ras-dependent Raf activation in situ. Mol. Cell. Biol. 17, 46-53   DOI   PUBMED
24 Cheung, H. W., Ling, M. T., Tsao, S. W., Wong, Y. C. and Wang, X. (2004) Id-1-induced Raf/MEK pathway activation is essential for its protective role against taxol-induced apoptosis in nasopharyngeal carcinoma cells. Carcinogenesis 25, 881-887   DOI   ScienceOn
25 Mason, J. M., Morrison, D. J., Bassit, B., Dimri, M., Band, H., Licht, J. D. and Gross, I. (2004) Tyrosine phosphorylation of Sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop. Mol. Biol. Cell 15, 2176-2188   DOI   ScienceOn