Browse > Article

Optimization of the Reaction Conditions for (R)-Phenyl-1,2-ethanediol Preparation by Recombinant Epoxide Hydrolase from Caulobacter crescentus  

Lee, Ok-Kyung (Department of Food Science and Biotechnology, Kyungsung University)
Kim, Hee-Sook (Department of Food Science and Biotechnology, Kyungsung University)
Publication Information
Microbiology and Biotechnology Letters / v.35, no.4, 2007 , pp. 285-291 More about this Journal
Abstract
Enantioconvergent hydrolysis process for the preparation of chiral diol from racemic epoxides by using the recombinant Caulobacter crescentus epoxide hydrolase (CcEH) in Escherichia coli BL21 (DE3) was optimized. For the optimization, the effects of detergent, temperature and product inhibition on the enantiopurity and the yield of diol were investigated. (R)-phenyl-1,2-ethanediol with 92% enantiomeric excess and 56% yield from 20 mM racemic styrene oxide was obtained by using the recombinant CcEH at the optimal condition of $10^{\circ}C$ and the addition of 2% (w/v) Tween 80. At 50 mM racemic styrene oxide was used as a substrate, (R)-phenyl-1,2-ethanediol was obtained with 87% enantiomeric excess and 77% yield. Racemic phenyl-1,2-ethanediol, (R)-phenyl-1,2-ethanediol and (S)-phenyl-1,2-ethanediol dramatically inhibited the hydrolytic activity of the recombinant CcEH. These results suggested that another EH with the regioselectivity on ${\beta}$-position of (R)-enantiomer and without feedback inhibition by products would be needed as the partner EH of C. crescentus EH.
Keywords
Epoxide hydrolase; Caulobacter crescentus; (R)-phenyl-1,2-ethanediol; enantioconvergent hydrolysis; optimization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Archelas A. and R. Furstoss. 2001. Synthetic applications of epoxide hydrolases. Curr. Opin. Chem. Biol. 5: 112-119   DOI   ScienceOn
2 Besse, P. and H. Veschambre. 1994. Chemical and biological synthesis of chiral epoxides. Tetrahedron. 50: 8885-8927   DOI   ScienceOn
3 Faber, K. and W. Kroutil. 2002. Streoselectivity in biocatalytic enantioconvergent reactions and a computer program for its determination. Tetrahedron: Asymmetry 13: 377-382   DOI   ScienceOn
4 Genzel, Y., A. Archelas, Q. B. Broxterman, B. Schulze, and R. Furstoss. 2002. Microbiological transformation 50: selection of epoxide hydrolase for enzymatic resolution of 2-, 3-, or 4-pyridyloxirane. J. Mol. Catal. B: Enz. 16: 217-222   DOI   ScienceOn
5 Monterde, M. I., M. Lombard, A. Archelas, A. Cronin, M. Arand, and R. Furstoss. 2004. Enzymatic transformation. Part 58: Enantioconvergent biohydrolysis of styrene oxide derivatives catalyzed by the Solanum tuberosum epoxide hydrolase. Tetrahedron: Asymmetry 15: 2801-2805   DOI   ScienceOn
6 Qing. G, L. C. Ma, A. Khorchid, G. V. T. Swapna, T. K. Mal, M. M. Takayama, B. Xia, S. Phadtare, H. Ke, T. Acton, G. T. Montelione, M. Ikura, and M. Inouye. 2004. Cold-shock induced high-yield protein production in Escherichia coli. Nature Biotechnol. 22: 877-882   DOI   ScienceOn
7 Lee, J.-H. and E. Y. Lee. 2004. Enhancement of biocatalytic activity of recombinant Pichia pastoris for the production of chiral epichlorohydrin by lyoprotectant and detergent. J. Kor. Ind. Eng. Chem. 15: 150-152
8 Choi, W. J., E. C. Huh, H. J. Park, E. Y. Lee, and C. Y. Choi. 1998. Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis. Biotechnol. Tech. 12: 225-228   DOI
9 Lee, O. K. and E. Y. Lee. 2007. Biosynthesis of (R)-phenyl-1,2-ethanediol by using single recombinant epoxide hydrolase from Caulobacter crescentus. J. Kor. Ind. Eng. Chem. 18: 279-283
10 Cao, L., J. Lee, W. Chen, and T. K. Wood. 2006. Enantioconvergent production of (R)-1-phenyl-1,2-ethanediol from styrene oxide by combining the Solanum tuberosum and an evolved Agrobacterium radiobacter AD 1 epoxide hydrolases. Biotechnol. Bioeng. 94: 522-529   과학기술학회마을
11 Moussou, P., A. Archelas, J. Baratti, and R. Furstoss. 1998. Microbiological transformations. Part 39: Determination of the regioselectivity occurring during oxirane ring opening by epoxide hydrolases: a theoretical analysis and a new method for its determination. Tetrahedron: Asymmetry 9: 1539-1547   DOI   ScienceOn
12 Sakai, T., I. kawabata, T. Kishimoto, T. Ema, and M. Utaka. 1997. Enhancement of the enantioselectivity in lipasecatalyzed kinetic resolution of 3-phenyl-2H-azirine-2-methanol by lowering the temperature to $-40^{\circ}C$. J. Org. Chem. 62: 4906-4707   DOI   ScienceOn
13 Schmid, A., J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, and B. Witholt. 2001. Industrial biocatalysis today and tomorrow. Nature. 409: 258-268   DOI   ScienceOn
14 Strauss, U. T., U. Felfer, and K. Faber. 1999. Biocatalytic transformation of racemates into chiral building blocks in 100% chemical yield and 100% enantiomeric excess. Tetrahedron: Asymmetry 10: 107-117   DOI   ScienceOn
15 Collins, A. N., G. N. Sheldrake, and J. Crosby. 1992. Chirality in industry. pp. 1-66, John Wiley & Sons, New York, U.S.A
16 Gong, P. F., J. H. Xu, Y. F. Tang, and H. Y. Wu. 2003. Improved catalytic performance of Bacillus megaterium epoxide hydrolase in a medium containing Tween 80. Biotechnol. Prog. 19: 652-654   DOI   ScienceOn
17 Lee, E. Y. and H. S. Kim. 2004. Epoxide hydrolase-catalyzed asymmetric enantiose1ective resolution for the production of chiral epichlorohydrin. J. Kor. Ind. Eng. Chem. 15: 528-532
18 Kronenburg, N. A. E. and J. A. M. de Bont. 2001. Effects of detergents on specific activity and enantioselectivity of the epoxide hydrolase from Rhodotorula glutinis. Enz. Microbiol. Tech. 28: 210-217   DOI   ScienceOn
19 Manoj, K. M., A. Archelas, J. Baratti, and R. Furstoss. 2001. Microbiological transformations. Part 45: A green chemistry preparative scale synthesis of enantiopure building blocks of Eliprodil: elaboration of a high substrate concentration epoxide hydrolase-catalyzed hydrolytic kinetic resolution process. Tetrahedron. 57: 695-701   DOI   ScienceOn