• 제목/요약/키워드: feed wastewater characteristics

검색결과 31건 처리시간 0.022초

유동층 생물반응기의 구조변화에 따른 하수처리 (Sewage Disposal by Different Structure of Fluidized Bed Biofilm Reactor)

  • 박종만;이재용;김철경;고창웅;김남기
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.181-187
    • /
    • 2004
  • The purpose of this study is to investigate the biofilm reactors capable of doing high efficiency treatment. Vertical fluidized bed biofilm reactor(VFBBR) and spiral fluidized bed biofilm reactor(SFBBR) was used for their performence in biodegradation of artificial sewage. The factors influencing the efficiency of those reactors were compared with difference of physical condition. They had same size but different structure to gain access of its unique characteristics. When recycle solution with flow rate of 22 mL/min and artificial sewage with flow rate of 2~10 mL/min were fed into two reactors in aerobic state, the average $COD_{cr}$, removal rate for biodegradation of SFBBR was greater than VFBBR. After reactor feed sewage was constantly maintained as flow rate of 4 mL/min and the recycle solution were changed to 10~32 mL/min respectively, the average $COD_{cr}$ removal rate of artificial sewage in SFBBR was greater than VFBBR. In this experiment for addition of support media into two reactors SFBBR was 4.1% excellent than VFBBR. Above all, SFBBR excelled VFBBR in boidegradation of organic matter in sewage.

다단 나노여과 공정에서 고농도 geosmin 및 2-Methylisoborneol (MIB)의 제거특성 (Rejection property of geosmin and 2-Methylisoborneol (MIB) with high concentration level at multi stage nanofiltration (NF) membrane system)

  • 유영범;최양훈;김동진;권순범;김충환
    • 상하수도학회지
    • /
    • 제28권4호
    • /
    • pp.397-409
    • /
    • 2014
  • Algal problem in drinking water treatment is being gradually increased by causing deterioration of water supplies therefore, especially taste and odor compounds such as geosmin and 2-MIB occur mainly aesthetic problem by its unpleasant effects resulting in the subsequent onset of complaints from drinking water consumer. Recently, geosmin and 2-MIB are detected frequently at abnormally high concentration level. However, conventional water treatment without advanced water treatment processes such as adsorption and oxidation process, cannot remove these two compounds efficiently. Moreover, it is known that the advanced treatment processes i.e. adsorption and oxidation have also several limits to the removal of geosmin and 2-MIB. Therefore, the purpose of this study was not only to evaluate full scale nanofiltration membrane system with $300m^3/day$ of permeate capacity and 90% of recovery on the removal of geosmin and 2-MIB in spiked natural raw water sources at high feed concentration with a range of approximately 500 to 2,500 ng/L, but also to observe rejection property of the compounds within multi stage NF membrane system. Rejection rate of geosmin and 2-MIB by NF membrane process was 96% that is 4% of passage regardless of the feed water concentration which indicates NF membrane system with an operational values suggested in this research can be employed in drinking water treatment plant to control geosmin and 2-MIB of high concentration. But, according to results of regression analysis in this study it is recommended that feed water concentration of geosmin and 2-MIB would not exceed 220 and 300 ng/L respectively which is not to be perceived in drinking tap water. Also it suggests that the removal rate might be depended on an operating conditions such as feed water characteristics and membrane flux. When each stage of NF membrane system was evaluated relatively higher removal rate was observed at the conditions that is lower flux, higher DOC and TDS, i.e., $2^{nd}$ stage NF membrane systems, possibly due to an interaction mechanisms between compounds and cake layer on the membrane surfaces.

응집 및 정밀여과공정의 강화역세정시 NaOCl에 따른 PTFE막 투과능 회복과 막오염층 변화 (Permeability recovery and changes in fouling layer characteristics of PTFE membrane by enhanced backwash cleaning using NaOCl during coagulation and microfiltration)

  • 강선구;박근영;곽동근;김윤중;권지향
    • 상하수도학회지
    • /
    • 제29권2호
    • /
    • pp.233-241
    • /
    • 2015
  • Polytetrafluoroethylene (PTFE) membrane has high resistance to chlorine, which is a great advantages in chemical cleaning to recover water flux during membrane processes in drinking water systems. A humic kaolin water with approximately 4 mg/L of DOC and 10 NTU of turbidity was prepared as a feed water. Coagulation pretreatment with or without settling was applied. The coagulation with settling showed the greatest water production. The reduced flux was effectively recovered by NaOCl cleaning, i.e., 21% recovery by 50 mg/L of NaOCl cleaning and 49% recovery by 500 mg/L NaOCl cleaning. The images of SEM and AFM analyses were corresponded to the water flux variation. However, when the floc was accumulated on the membrane surfaces, the efficiency of NaOCl cleaning was substantially limited. In addition, dynamic contact angle became greater after cleaning, which indicates changes in characteristics of fouling layer such as surface hydrophobicity. Proper cleaning technologies during enhanced backwash using NaOCl would expand application of PTFE membranes in drinking water systems.

정수처리 공정 적용을 위한 MCDI (Membrane Capacitive Deionization) Module의 수용액 내 TDS 제거 특성에 관한 연구 (A study on the TDS removal characteristics in aqueous solution using MCDI module for application of water treatment process)

  • 오창석;안주석;오현제
    • 상하수도학회지
    • /
    • 제35권4호
    • /
    • pp.293-300
    • /
    • 2021
  • Recently, various researches have been studied, such as water treatment, water reuse, and seawater desalination using CDI (Capacitive deionization) technology. Also, applications like MCDI (Membrane capacitive deionization), FCDI (Flow-capacitive deionization), and hybrid CDI have been actively studied. This study tried to investigate various factors by an experiment on the TDS (Total dissolved solids) removal characteristics using MCDI module in aqueous solution. As a result of the TDS concentration of feed water from 500 to 2,000 mg/L, the MCDI cell broke through faster when the higher TDS concentration. In the case of TDS concentration according to the various flow rate, 100 mL/min was stable. In addition, there was no significant difference in the desorption efficiency according to the TDS concentration and method of backwash water used for desorption. As a result of using concentrated water for desorption, stable adsorption efficiency was shown. In the case of the MCDI module, the ions of the bulk solution which is escaped from the MCDI cell to the spacer during the desorption process are more important than the concentration of ions during desorption. Therefore, the MCDI process can get a larger amount of treated water than the CDI process. Also, prepare a plan that can be operated insensitive to the TDS concentration of backwash water for desorption.

막여과 정수처리공정에서 망간에 의한 막오염 특성 및 화학세정효율 평가 (Evaluation of membrane fouling characteristics due to manganese and chemical cleaning efficiency in microfiltration membrane process)

  • 강준석;박서경;송지영;정아영;이정준;김한승
    • 상하수도학회지
    • /
    • 제31권6호
    • /
    • pp.539-549
    • /
    • 2017
  • In water treatment process using microfiltration membranes, manganese is a substance that causes inorganic membrane fouling. As a result of analysis on the operation data taken from I WTP(Water Treatment Plant), it was confirmed that the increase of TMP was very severe during the period of manganese inflow. The membrane fouling fastened the increase of TMP and shortened the service time of filtration or the cleaning cycle. The TMP of the membrane increased to the maximum of $2.13kgf/cm^2$, but it was recovered to the initial level ($0.17kgf/cm^2$) by the 1st acid cleaning step. It was obvious that the main membrane fouling contaminants are due to inorganic substances. As a result of the analysis on the chemical waste, the concentrations of aluminum(146-164 mg/L) and manganese(110-126 mg/L) were very high. It is considered that aluminum was due to the residual unreacted during coagulation step as a pretreatment process. And manganese is thought to be due to the adsorption on the membrane surface as an adsorbate in feed water component during filtration step. For the efficient maintenance of the membrane filtration facilities, optimization of chemical concentration and CIP conditions is very important when finding the abnormal level of influent including foulants such as manganese.

역삼투막을 이용한 가스하이드레이트 해수담수화 공정 내 용존 가스의 제거 가능성 평가 (Removal potential of dissolved gas in gas hydrate desalination process by reverse osmosis)

  • 유현욱;김민석;임준혁;김종하;이주동;김수한
    • 상하수도학회지
    • /
    • 제30권6호
    • /
    • pp.635-643
    • /
    • 2016
  • Gas hydrate (GH)-based desalination process have a potential as a novel unit desalination process. GHs are nonstoichiometric crystalline inclusion compounds formed at low temperature and a high pressure condition by water and a number of guest gas molecules. After formation, pure GHs are separated from the remaining concentrated seawater and they are dissociated into guest gas and pure water in a low temperature and a high pressure condition. The condition of GH formation is different depending on the type of guest gas. This is the reason why the guest gas is a key to success of GH desalination process. The salt rejection of GH based desalination process appeared 60.5-93%, post treatment process is needed to finally meet the product water quality. This study adopted reverse osmosis (RO) as a post treatment. However, the test about gas rejection by RO process have to be performed because the guest gas will be dissolved in a GH product (RO feed). In this research, removal potential of dissolved gas by RO process is performed using lab-scale RO system and GC/MS analysis. The relation between RO membrane characteristics and gas removal rate were analyzed based on the GC/MS measurement.

축전식탈염(CDI) 공정을 이용한 수용액 중 바륨 이온 분리 특성 연구 (Separation Characteristics of Barium Ion in Water Using Capacitive Deionization (CDI) Process)

  • 남동현;임지원
    • 멤브레인
    • /
    • 제29권6호
    • /
    • pp.355-361
    • /
    • 2019
  • 본 연구에서는 기존의 CDI (capacitive deionization)를 이용해 산업 폐수에 함유되어있을 수 있는 바륨 이온 제거에 관해서 연구하였다. Feed 용액은 30 mg/L의 BaCl2 (barium chloride dihydrate) 수용액을 사용하였고, 유속은 10 mL/min 설정하였다. 흡착 조건을 1.2 V에서 3, 5, 7분으로, 탈착 조건은 각각 -1, -1.5, -2 V 및 1, 2, 3분으로 다양하게 조정하여 가장 효율이 높은 조건을 선정하는 실험을 진행하였고, 그 결과 흡착 1.2 V/7분 탈착 -1 V/1분의 조건에서 64.4%의 바륨 이온 제거효율을 나타내었다. 동일한 실험 조건으로 바륨과 같은 농도인 30 mg/L NaCl 수용액에 대하여 CDI의 제거효율과 비교 분석한 결과 흡착 1.2 V/7분 탈착 -1 V/1분의 조건에서 69.9%의 제거효율을 나타내었다.

홀스타인 건유우의 분뇨배설량과 이화학적 특성 (Quantity and Characteristics of Manure Produced Holstein Dry Cow)

  • 최동윤;강희설;곽정훈;최희철;김재환;김태일;박치호;전병수;한정대
    • 한국축산시설환경학회지
    • /
    • 제8권2호
    • /
    • pp.107-110
    • /
    • 2002
  • This study was carried out to investigate the quantity of Holstein dry cow manure excreted and their characteristics. The results obtained in this study were summarized as follow; The average body weight of the Holstein dry cow during experiment was 619.9kg. The feed intake(DM basis) and water consumption was 10.7, 38.6kg/day/head, repectively. The manure production of Holstein dry cow was 44.8kg/day/head (feces 26.9, urine 17.9kg). The moisture content of feces and urine was 84.5%, 95.3%, respectively. Wastewater pollutant concentration of $BOD_5$(Biochemical Oxygen demand), $COD_{Mn}$ (Chemical Oxygen demand), SS(Suspended Solids), T-N(Total Nitrogen) and T-P(Total Phosphorus), excreted from Holstein dry cow was 16,874,55,763, 87,333, 2,353, $368mg/{\ell}$ in feces and 5,621, 8,673, 518, 2,423, $3mg/{\ell}$ in urine, repectively. The fertilizer content of manure, N(Nitrogen), $P_2O_5$(Phosphoric acid) and $K_2O$(Potassium oxide) was 0.24, 0.08, 0.15% in feces and 0.24, 0.001, 0.30% in urine, respectively.

  • PDF

비개질/개질 생물막을 이용한 오수고도처리공정에서 혐기조와 무산소조의 원수 분배율에 따른 유기물 및 질소 제거 (The Removal of Organics and Nitrogen with Step Feed Ratio Change into the Anoxic and Anaerobic reactor in Advanced Sewage Treatment process Using Nonsurface-modified and Surface-modified Media Biofilm)

  • 선용호
    • KSBB Journal
    • /
    • 제20권4호
    • /
    • pp.253-259
    • /
    • 2005
  • 본 연구는 고정 생물막을 이용한 혐기/무산소/호기 공정으로 구성된 반응기에서 폴리에틸렌 재질의 표면을 이온빔으로 조사하여 소수성 표면을 친수성으로 만든 표면개질담체를 호기조의 여재로 사용하고 혐기/무산소조의 여재로는 표면 개질을 하지 않은 담체를 사용하여, 외부 탄소원 대신 원수내의 RBDCOD를 탄소원으로 이용하고자 혐기조와 무산소조에 원수를 분할 주입하였을 때 나타나는 유기물 및 T-N 제거 특성을 알아보았다. 혐기/무산소조로의 원수 분배율이 각각 10 : 0, 9 : 1, 8 : 2, 6 : 4로 설정하였으며, 각각의 분배율에 대하여 $93.3\%,\;92.6\%,\;92.4\%,\;91.6\%$$BOD_5$ 제거율 (유기물의 제거능)을 보였다. 하지만 무산소조까지의 $BOD_5$ 제거율(유기물 이용능)은 9 : 1에서 $84.8\%$로 가장 높은 것으로 나타났으며, 분배율 10 : 0, 8 : 2는 각각 $77.0\%,\;75.3\%$로서 거의 비슷한 수준이었고, 분배율 6 : 4 경우에 $61.1\%$로 가장 낮은 수치를 나타내었다. T-N 제거율은 9 : 1의 분배율로 분할하였을 때가 $67.4\%$로 가장 제거 효율이 높았으며, 분배율 10 : 0, 8 : 2 경우는 각각 $61.3\%,\;60.7\%$로 비슷한 경향을 보였으나 분배율을 6 : 4로 하였을 때는 $55.5\%$의 제거율을 나타내 분배율 9 : 1의 경우와는 약 $12\%$의 차이를 보였다. 또한 10 : 0, 9 : 1, 8 : 2의 분배율에서는 질산화가 거의 비슷한 수준으로 발생하였지만, 6 : 4로 주입하였을 경우에는 질산화의 저해가 나타나고, 방류수 중의 대부분의 질소성분이 암모니아 성분으로 방류되었다. 이 공정에서 탄소원으로 생하수를 이용하는 것이 메탄올과 같은 독성 탄소원에 비해 독성을 지니지 않고 약품비용이 들지 않는다는 측면에서 유리할 것으로 사료된다.

혐기성 입상슬러지의 형태학적 특성 (The Morphological Characteristics of Anaerobic Granular Sludge)

  • 신항식;배병욱;백병천
    • 대한토목학회논문집
    • /
    • 제11권2호
    • /
    • pp.91-98
    • /
    • 1991
  • 본 논문에서는 주정폐액을 처리한 이상 UASB 공법에서 형성된 입상슬러지에 관한 현미경실험 결과를 제시하고자 한다. 기질로 사용한 주정폐액의 SS 및 COD 농도는 각각 3.6~10.6, 17.3~30.4g/l였으며, 12.5 l와 4.7 l의 UASB 반응조가 사용되었다. 입상슬러지의 형태학적 연구에는 SEM과 TEM을 사용하였다. 운전 90일과 120일경에 산형성조와 메탄형성조로부터 다른 색깔과 형상을 가진 두 종류의 입상슬러지가 형성되었다. 산형성조 입상슬러지는 주로 긴 고리로 연결된 큰 rod형 bacteria 짧고 통통한 rod형 bacteria, 그리고 다양한 크기의 coccus형 bacteria로 구성되었다. 반면에 메탄조 입상슬러지는 Methanothrix로 구성된 network내에 다양한 종류의 bacteria가 포획되어 있는 구조를 가졌다.

  • PDF