DOI QR코드

DOI QR Code

Separation Characteristics of Barium Ion in Water Using Capacitive Deionization (CDI) Process

축전식탈염(CDI) 공정을 이용한 수용액 중 바륨 이온 분리 특성 연구

  • Nam, Dong Hyun (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 남동현 (한남대학교 화공신소재공학과) ;
  • 임지원 (한남대학교 화공신소재공학과)
  • Received : 2019.12.11
  • Accepted : 2019.12.23
  • Published : 2019.12.31

Abstract

We studied the removal of barium ions that may be contained in industrial wastewater using the existing capacitive deionization (CDI). The 30 mg/L BaCl2 (barium chloride dihydrate) solution was used as the feed solution, and the flow rate was set to 10 mL/min. The adsorption conditions were varied from 1.2 V to 3, 5 and 7 min, and the desorption conditions were -1, -1.5, -2 V and 1, 2 and 3 min, respectively, to select the most efficient conditions. As a result, barium ion removal efficiency of 64.4% was obtained under the adsorption conditions of adsorption of 1.2 V/7 min and the desorption -1 V/1 min. For the desorption voltages and time, under the same experimental conditions, the removal efficiency of CDI for 30 mg/L NaCl aqueous solution with the same concentration as barium showed 69.9% removal efficiency under the adsorption conditions of and the desorption conditions of 1.2 V/7 min desorption -1 V/1 min, respectively.

본 연구에서는 기존의 CDI (capacitive deionization)를 이용해 산업 폐수에 함유되어있을 수 있는 바륨 이온 제거에 관해서 연구하였다. Feed 용액은 30 mg/L의 BaCl2 (barium chloride dihydrate) 수용액을 사용하였고, 유속은 10 mL/min 설정하였다. 흡착 조건을 1.2 V에서 3, 5, 7분으로, 탈착 조건은 각각 -1, -1.5, -2 V 및 1, 2, 3분으로 다양하게 조정하여 가장 효율이 높은 조건을 선정하는 실험을 진행하였고, 그 결과 흡착 1.2 V/7분 탈착 -1 V/1분의 조건에서 64.4%의 바륨 이온 제거효율을 나타내었다. 동일한 실험 조건으로 바륨과 같은 농도인 30 mg/L NaCl 수용액에 대하여 CDI의 제거효율과 비교 분석한 결과 흡착 1.2 V/7분 탈착 -1 V/1분의 조건에서 69.9%의 제거효율을 나타내었다.

Keywords

References

  1. Y. J. Kim and J. H. Choi, "Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane", Sep. Purif. Technol., 71, 70 (2010). https://doi.org/10.1016/j.seppur.2009.10.026
  2. A. Hassanvand, G. Q. Chen, P. A. Webley, and S. E. Kentish, "A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization", Water Res., 131, 100 (2018). https://doi.org/10.1016/j.watres.2017.12.015
  3. M. W. Ryoo, J. H. Kim, and G. Seo, "Role of titania incorporated on activated caron cloth for capacitive deionization of NaCl solution", J. Colloid Interface Sci., 264, 414 (2003). https://doi.org/10.1016/S0021-9797(03)00375-8
  4. F. A. AlMarzooqi, A. A. A. Ghaferi, I. Saadat, and N. Hilal, "Application of capacitive deionisation in water desalination: A review", Desalination, 342, 3 (2014). https://doi.org/10.1016/j.desal.2014.02.031
  5. Z. Huang, L. Lu, Z. Cai, and Z. J. Ren, "Individual and competitive removal of heavy metals using capacitive deionization", J. Hazard. Mater., 302, 323 (2016). https://doi.org/10.1016/j.jhazmat.2015.09.064
  6. J. S. Kim, C. S. Kim, H. S. Shin, and J. W. Rhim, "Application of synthesized anion and cation exchange polymers to membrane capacitive deionization (MCDI)", Macromol. Res., 23(4), 360 (2015). https://doi.org/10.1007/s13233-015-3049-6
  7. Y. S. Jeon, K. Y. Kim, and J. W. Rhim, "Studies on the preparation and characterization of PVA based cation-exchange membranes for DMFC application", Membr. J., 25, 144 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.144
  8. H. Li, L. Zou, L. Pan, and Z. Sun, "Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization", Sep. Purif. Technol., 75, 8 (2010). https://doi.org/10.1016/j.seppur.2010.07.003
  9. Y. J. Kim, J. H. Kim, and J. H. Choi, "Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI)", J. Membr. Sci., 429, 52 (2013). https://doi.org/10.1016/j.memsci.2012.11.064
  10. M. W. Ryoo, J. H. Kim, and G. Seo, "Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution", J. Colloid Interface Sci., 264, 414 (2003). https://doi.org/10.1016/S0021-9797(03)00375-8
  11. M. W. Ryoo and G. Seo, "Improvement in capacitive deionization function of actived carbon by titania modification", Water Res., 37, 1527 (2003). https://doi.org/10.1016/S0043-1354(02)00531-6
  12. B. M. Asquith, J. Meier-Haack, and B. P. Ladewig, "Poly(arylene ether sulfone) copolymers as binders for capacitive deionization activated carbon electrodes", Chem. Eng. Res. Des., 104, 81 (2015). https://doi.org/10.1016/j.cherd.2015.07.020
  13. Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, and L. Pan, "Review on carbon-based composite materials for capacitive deionization", RSC Adv., 5, 15205 (2015). https://doi.org/10.1039/C4RA14447C
  14. Y. J. Kim and J. H. Choi, "Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer", Water Res., 44, 990 (2010). https://doi.org/10.1016/j.watres.2009.10.017
  15. P. M. Biesheuvel and A. van der Wal, "Membrane capacitive deionization", J. Membr. Sci., 346, 256 (2010). https://doi.org/10.1016/j.memsci.2009.09.043
  16. T. Y. Kim and J. W. Rhim, "Confirmation of the fouling phenomena in CDI process and the establishment of its removal process conditions", Membr. J., 29, 276 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.5.276
  17. L. Lee, K. H. Ahn, M. H. Yang, I. C. Choi, H. M. Chung, W. S. Lee, and J. H Park, "The study on the water quality characteristics of barium in the raw water of domestic natural mineral water", J. Korean Soc. Water Environ., 33, 416 (2017). https://doi.org/10.15681/KSWE.2017.33.4.416
  18. W. S. Yoon and J. W. Rhim, "Studies of performance and enlarged capacity through multi-stages stacked module in membrane capacitive deionization process", Membr. J., 27, 449 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.449