Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.355

Separation Characteristics of Barium Ion in Water Using Capacitive Deionization (CDI) Process  

Nam, Dong Hyun (Department of Advanced Materials and Chemical Engineering, Hannam University)
Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
Publication Information
Membrane Journal / v.29, no.6, 2019 , pp. 355-361 More about this Journal
Abstract
We studied the removal of barium ions that may be contained in industrial wastewater using the existing capacitive deionization (CDI). The 30 mg/L BaCl2 (barium chloride dihydrate) solution was used as the feed solution, and the flow rate was set to 10 mL/min. The adsorption conditions were varied from 1.2 V to 3, 5 and 7 min, and the desorption conditions were -1, -1.5, -2 V and 1, 2 and 3 min, respectively, to select the most efficient conditions. As a result, barium ion removal efficiency of 64.4% was obtained under the adsorption conditions of adsorption of 1.2 V/7 min and the desorption -1 V/1 min. For the desorption voltages and time, under the same experimental conditions, the removal efficiency of CDI for 30 mg/L NaCl aqueous solution with the same concentration as barium showed 69.9% removal efficiency under the adsorption conditions of and the desorption conditions of 1.2 V/7 min desorption -1 V/1 min, respectively.
Keywords
capacitive deionization (CDI); barium chloride dihydrate; removal efficiency; removal condition;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Y. J. Kim and J. H. Choi, "Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane", Sep. Purif. Technol., 71, 70 (2010).   DOI
2 A. Hassanvand, G. Q. Chen, P. A. Webley, and S. E. Kentish, "A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization", Water Res., 131, 100 (2018).   DOI
3 M. W. Ryoo, J. H. Kim, and G. Seo, "Role of titania incorporated on activated caron cloth for capacitive deionization of NaCl solution", J. Colloid Interface Sci., 264, 414 (2003).   DOI
4 F. A. AlMarzooqi, A. A. A. Ghaferi, I. Saadat, and N. Hilal, "Application of capacitive deionisation in water desalination: A review", Desalination, 342, 3 (2014).   DOI
5 Z. Huang, L. Lu, Z. Cai, and Z. J. Ren, "Individual and competitive removal of heavy metals using capacitive deionization", J. Hazard. Mater., 302, 323 (2016).   DOI
6 J. S. Kim, C. S. Kim, H. S. Shin, and J. W. Rhim, "Application of synthesized anion and cation exchange polymers to membrane capacitive deionization (MCDI)", Macromol. Res., 23(4), 360 (2015).   DOI
7 Y. S. Jeon, K. Y. Kim, and J. W. Rhim, "Studies on the preparation and characterization of PVA based cation-exchange membranes for DMFC application", Membr. J., 25, 144 (2015).   DOI
8 H. Li, L. Zou, L. Pan, and Z. Sun, "Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization", Sep. Purif. Technol., 75, 8 (2010).   DOI
9 Y. J. Kim, J. H. Kim, and J. H. Choi, "Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI)", J. Membr. Sci., 429, 52 (2013).   DOI
10 M. W. Ryoo, J. H. Kim, and G. Seo, "Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution", J. Colloid Interface Sci., 264, 414 (2003).   DOI
11 M. W. Ryoo and G. Seo, "Improvement in capacitive deionization function of actived carbon by titania modification", Water Res., 37, 1527 (2003).   DOI
12 B. M. Asquith, J. Meier-Haack, and B. P. Ladewig, "Poly(arylene ether sulfone) copolymers as binders for capacitive deionization activated carbon electrodes", Chem. Eng. Res. Des., 104, 81 (2015).   DOI
13 Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, and L. Pan, "Review on carbon-based composite materials for capacitive deionization", RSC Adv., 5, 15205 (2015).   DOI
14 Y. J. Kim and J. H. Choi, "Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer", Water Res., 44, 990 (2010).   DOI
15 P. M. Biesheuvel and A. van der Wal, "Membrane capacitive deionization", J. Membr. Sci., 346, 256 (2010).   DOI
16 T. Y. Kim and J. W. Rhim, "Confirmation of the fouling phenomena in CDI process and the establishment of its removal process conditions", Membr. J., 29, 276 (2019).   DOI
17 L. Lee, K. H. Ahn, M. H. Yang, I. C. Choi, H. M. Chung, W. S. Lee, and J. H Park, "The study on the water quality characteristics of barium in the raw water of domestic natural mineral water", J. Korean Soc. Water Environ., 33, 416 (2017).   DOI
18 W. S. Yoon and J. W. Rhim, "Studies of performance and enlarged capacity through multi-stages stacked module in membrane capacitive deionization process", Membr. J., 27, 449 (2017).   DOI