• 제목/요약/키워드: feed manufacturing

검색결과 589건 처리시간 0.023초

복합공작기계의 이송계 운동정밀도 측정의 연구 (A Study on the Measurement of Motion Accuracy for Feed Drive System of Multi-task Machine Tool)

  • 고해주;정윤교
    • 한국기계가공학회지
    • /
    • 제6권3호
    • /
    • pp.112-118
    • /
    • 2007
  • Recently, the machine tools called multi-task machines, which mounted rotary axes on the table or spindle are used increasingly. Accordingly, multi-task machine tool takes a growing interest on the motion accuracy of feed drive system. In this study, measurement and diagnosis of motion errors ware attempted from circular pattern obtained by using DBB (Double ball bar) device. Those were obtained at both clockwise and counter clockwise motions in mutually perpendicularly intersecting three planes. The reliability of error measurement system for multi-task machine tool was verified by the direct test cutting.

  • PDF

복합공작기계의 이송계 운동정밀도 측정의 연구 (A Study on the Measurement of Motion Accuracy for Feed Drive System of Multi-task Machine Tool)

  • 고해주;정윤교
    • 한국기계가공학회지
    • /
    • 제6권3호
    • /
    • pp.31-37
    • /
    • 2007
  • Recently, the machine tools called multi-task machines, which mounted rotary axes on the table or spindle are used increasingly. Accordingly, multi-task machine tool takes a growing interest on the motion accuracy of feed drive system. In this study, measurement and diagnosis of motion errors ware attempted from circular pattern obtained by using DBB (Double ball bar) device. Those were obtained at both clockwise and counter clockwise motions in mutually perpendicularly intersecting three planes. The reliability of error measurement system for multi-task machine tool was verified by the direct test cutting.

  • PDF

티타늄합금 황삭가공에서 냉각방법에 따른 절삭공구 마모특성에 관한 연구 (A Study on Characteristics of Cutting Tool Wear by Cooling Method in Rough Machining of Titanium Alloy)

  • 김기하
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.129-134
    • /
    • 2013
  • Titanium used in industry has been widely applied for aerospace important parts and automobile important parts, etc. because the titanium is higher in strength compared to the steel and light in weight compared to the steel. This study is to investigate the effect of cutting tool cooling method and cutting time on the spindle speed and feed rate of vertical machining center as a parameter to find the rough cutting time in the medium speed cutting machining of the titanium alloy. It is found that the cutting machining heat are increased as the feed rate, cutting time and spindle speed are raised.

Al 합금의 고속가공에서 치수오차와 표면정도 추이고찰 (A Study on Transition of Dimension Error and Surface Precision in High Speed Machining of Al-alloy)

  • 정문섭
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.96-102
    • /
    • 2000
  • High speed machining aims to raise the productivity and efficiency by making more precise and higher value-added products than any other machining method by means of the high speediness of spindle and feed drive system. The purpose of this study is to investigate the effects of the run-out of endmill on the dimension precision of workpiece and to obtain the fundamental data on high speed machining which is available by machining the side of Al-alloy with solid carbide endmills in high speed machining center and by measuring dimensions and surface roughness. From the results of experimentation following are obtained ; if spindle speed is ultra high in conditions that radial depth of cut and feed per tooth are very small highly precise and accurate products are to be made efficiently with high feed rate. and so we can raise productivity.

  • PDF

플라즈마 이온주입 공구의 가공조건이 절삭력과 표면 거칠기에 미치는 영향 분석 (Analysis of the Effects of Cutting Force and Surface Roughness in the Cutting Conditions of Plasma Source Ion Implantation Tools)

  • 강성기
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.755-760
    • /
    • 2012
  • In this study, three dimensional cutting force components and surface roughness appeared in high speed cutting by using tungsten carbide endmill tools implanted ion or not found mutual relations through several analysis of statistical dispersion. It is showed that cutting force(Fx) is affect with spindle speed and feed rate, cutting force(Fy) is affect with spindle speed and ion implantation time and cutting force(Fz) is affect with feed rate in interaction through the statistical method of ANOVA of cutting force and surface roughness, it is analyzed that it is affected of spindle speed and feed rate in surface roughness.

티타늄 가공의 절삭조건에 따른 가공특성에 관한 연구 (A Study on Characteristics of Cutting by Cutting Conditions in Titanium Machining)

  • 김기하
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.84-89
    • /
    • 2013
  • Titanium used in industry has been widely applied for aerospace engine, structures and spacecraft exterior, etc. because the titanium is higher in strength compared to the steel and light in weight compared to the steel. This study is to investigate the effect of cutting depth and cutting time on the spindle speed and feed rate of vertical machining center as a parameter to find the rough cutting time and cutting depth in the medium speed cutting machining of the titanium alloy. It is found that the cutting machining heat are increased as the cutting depth, feed rate, cutting time and spindle speed are raised.

실험 계획법을 이용한 초정밀 연마 가공에 관한 연구 (A Study on the Ultra-precision Mirror Finishing Using the System of Experiments)

  • 김홍배
    • 한국생산제조학회지
    • /
    • 제7권5호
    • /
    • pp.134-139
    • /
    • 1998
  • There have been so manu study in the ultra-precision mirror finishing. Already Using system of experiments extract factors effecting surface roughness and find optimal machining conditions in 40${\mu}{\textrm}{m}$, 30${\mu}{\textrm}{m}$, 15${\mu}{\textrm}{m}$ abrasive film. So in this study, Using Abrasive film of 12~3${\mu}{\textrm}{m}$ extract factors effecting surface roughness and results are follows; Factor A(film feed) in 12${\mu}{\textrm}{m}$ and 5${\mu}{\textrm}{m}$ abrasive film, Factor A(film feed) and B(applied force) in 9${\mu}{\textrm}{m}$ abrasive film, Factor C(grinding speed) in 3${\mu}{\textrm}{m}$ abrasive film are main factor effecting surface roughness.

  • PDF

Development of a Virtual Machine Tool - Part 2: Dynamic Cutting Force Model, Thermal Behavior Model, Feed Drive System Model, and Comprehensive Software Environment

  • Ko, Jeong-Hoon;Yun, Won-Soo;Kang, Seok-Jae;Cho, Dong-Woo;Ahn, Kyung-Gee;Yun, Seung-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권3호
    • /
    • pp.42-47
    • /
    • 2003
  • In Part 2 of this paper, the dynamic cutting force model, thermal behavior model, and feed drive model used in the development of a virtual machine tool (VMT) are briefly described. Some results are presented to verify the proposed models. Experimental data agreed well with the predicted results fer each model. A comprehensive software environment to integrate the models into a VMT is also proposed.

선삭공정의 각도변화가 표면거칠기에 미치는 영향에 관한 기초 연구 (A Basic Study on the Surface Roughness in Turning Process Considering Taper Angle Variation)

  • 김동현;최준영;이춘만
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.16-21
    • /
    • 2011
  • In machining operation, the quality of surface finish is an important factor for many turned products. In this paper, surface quality in turning machining considering angle variation has been investigated. To reach this goal, surface quality turning experiments are carried out according to cutting conditions with angle variation. The variable cutting conditions are cutting speed, feed rate and taper angle of workpiece. The surface roughness was measured and the effects of cutting conditions were analyzed by the method of analysis of variance (ANOVA). From the experimental results and ANOVA, it is found that a better surface roughness can be obtained as decreasing feed rate, increasing cutting speed. Taper angle variation has been more influenced by feed rate and cutting speed.

알루미늄 합금의 스파이럴 상향가공 시 절삭조건이 표면거칠기에 미치는 영향 (Effects of cutting condition on surface roughness in the spiral up milling of aluminum alloy)

  • 천세호
    • 한국기계가공학회지
    • /
    • 제13권4호
    • /
    • pp.83-90
    • /
    • 2014
  • The spiral up milling of an aluminum alloy was performed in this study. In accordance with the cutting condition, the surface roughness behavior and significance of the research with regard to specific factors were analyzed. The cutting speed, feed, and depth of the cut were found to be statistically significant. A higher cutting speed improved the surface roughness. On the other hand, as the feed and depth of the cut increase, the surface roughness decreases. An interaction effect between the feed and depth of the cut was detected. According to the surface roughness in relation to the cutting conditions, the model showed non-linear behavior.