• Title/Summary/Keyword: fed batch

Search Result 447, Processing Time 0.033 seconds

Fermentative Water Purification based on Bio-hydrogen (생물학적 수소 발효를 통한 수처리 시스템)

  • Lee, Jung-Yeol;Chen, Xue-Jiao;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.926-931
    • /
    • 2011
  • Among various techniques for hydrogen production from organic wastewater, a dark fermentation is considered to be the most feasible process due to the rapid hydrogen production rate. However, the main drawback of it is the low hydrogen production yield due to intermediate products such as organic acids. To improve the hydrogen production yield, a co-culture system of dark and photo fermentation bacteria was applied to this research. The maximum specific growth rate of R. sphaeroides was determined to be $2.93h^{-1}$ when acetic acid was used as a carbon source. It was quite high compared to that of using a mixture of volatile fatty acids (VFAs). Acetic acid was the most attractive to the cell growth of R. sphaeroides, however, not less efficient in the hydrogen production. In the co-culture system with glucose, hydrogen could be steadily produced without any lag-phase. There were distinguishable inflection points in the accumulation of hydrogen production graph that resulted from the dynamic production of VFAs or consumption of it by the interaction between the dark and photo fermentation bacteria. Lastly, the hydrogen production rate of a repeated fed-batch run was $15.9mL-H_2/L/h$, which was achievable in the sustainable hydrogen production.

Quality Characteristics of Korean Traditional Rice Wine with Glutinous Rice (찹쌀 첨가에 따른 전통발효주의 품질 특성)

  • Lee, Youngseung;Kim, Hanna;Eom, Taekil;Kim, Sung-Hwan;Choi, Geun Pyo;Kim, Misook;Yu, Sungryul;Jeong, Yoonhwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1829-1836
    • /
    • 2013
  • This study is carried out to investigate the physicochemical characteristics, microbial population, and sensory characteristics during fermentation of Korean traditional rice wine with addition of glutinous rice. The fed-batch fermentation of rice was performed by Nuruk and yeast for 10 days at $28^{\circ}C$ in a water bath. The four fermentation batches included 0, 10, 15 and 20% of glutinous rice based on the total rice contents. The growth of total viable cells, lactic acid bacteria (LAB), and yeasts were similar among the four batches during the fermentation period. The population for total viable cells and LAB were increased for the first 3 days, and decreased slowly until 10 days. The number of yeast cells was rapidly decreased after day 6, when the alcohol content reached about 15% for all the fermentation batches. Physicochemical characteristics, such as pH, total acidity, and reducing sugars, were not different with the increase of additional glutinous rice contents. The ethanol production was higher in Korean traditional rice wine from non-glutinous rice (17.1%) than ones from glutinous rice (15.8~16.7%). For the sensory evaluations, Korean traditional rice wine with 15% glutinous rice was highly preferred due to the highest sweetness.

Structural Characteristics and Anti-inflammatory Activities of Chemically Sulfated-hyaluronic Acid from Streptococcus dysgalactiae (Streptococcus dysgalactiae로부터 분리된 히알루론산과 황화된 유도체의 구조와 항염증 활성)

  • Hong, Chang-Il;Jung, Eui-Gil;Han, Kook-Il;Kim, Yong Hyun;Lee, Sung Hee;Lee, Hong Sub;Han, Man-Deuk
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.545-554
    • /
    • 2016
  • Hyaluronic acid (HA) is an important macromolecule in medical and pharmaceutical fields. HA is a natural and linear polymer composed of repeating disaccharide units of β-1, 3-N-acetyl glucosamine and β-1, 4-glucuronic acid. This work aimed to confirm the structural characteristics and anti-inflammatory activities of HA and its chemically sulfated-HA. HA was produced from a fed-batch fermentation process using Streptococcus dysgalactiae in a 5 l bioreactor. HA was isolated water-soluble form (HA-WS) and water-insoluble form (HA-WI) from culture medium, and was obtained chemically sulfated-derivative (S-HA) that resulted in a 90% yield from HA-WI. The structural features of the sulfated- HA (S-HA) were investigated by FT-IR and 1H-NMR spectroscopy. The FT-IR and NMR patterns revealed the similarity in both the FTIR spectrum as well as NMR spectrum of both reference standard and purified HA from S. dysgalactiae. The anti-inflammatory activities of HA and S-HA were examined on LPS-induced RAW 264.7 cells. S-HA was significantly inhibited production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the gene levels of iNOS and COX-2, which are responsible for the production of NO and PGE2, respectively. Furthermore, S-HA also suppressed the overproduction of pro-inflammatory cytokine TNF-α (<80 pg/ml) and IL-6 (<100 pg/ml) compared to that of HA-WI. The present study clearly demonstrates that HA-S exhibits anti-inflammatory activities in RAW 264.7 macrophage cells.

Effects of Glucose and Acrylic acid Addition on the Biosynthesis of Medium-Chain-Length Polyhydroxyalkanoates by Pseudomonas chlororaphis HS21 from Plant Oils (Pseudomonas chlororaphis HS21에 의한 식물유로부터 Medium-Chain-Length Polyhydroxyalkanoates 생합성이 미치는 포도당 및 아크릴산의 첨가 효과)

  • Chung Moon-Gyu;Yun Hye Sun;Kim Hyung Woo;Nam Jin Sik;Chung Chung Wook;Rhee Young Ha
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.225-231
    • /
    • 2005
  • The characteristics of cell growth and medium-chain-length polyhydroxyalkanoate (MCL-PHA) biosynthesis of Pseudomonas chlororaphis HS21 were investigated using plant oils as the carbon substrate. The organism was efficiently capable of utilizing plant oils, such as palm oil, corn oil, and sunflower oil, as the sole carbon source for growth and MCL-PHA production. When palm oil (5 g/L) was used as the carbon source, the cell growth and MCL-PHA accumulation of this organism occurred simultaneously, and a high dry cell weight (2.4 g/L) and MCL-PHA ($40.2\;mol{\%}$ of dry cell weight) was achieved after 30 hr of batch-fermentation. The repeating unit in the MCL-PHA produced from palm oil composed of 3-hydroxyhexanoate ($7.0\;mol{\%}$), 3-hydroxyoctanoate ($45.3\;mol{\%}$), 3-hydroxydecanoate ($39.0\;mol{\%}$), 3-hydroxydodecanoate ($6.8\;mol{\%}$), and 3-hydroxytetradecanoate ($1.9\;mol{\%}$), as determined by GC/MS. Even though glucose was a carbon substrate that support cell growth but not PHA production, the conversion rate of palm oil to PHA was significantly increased when glucose was fed as a cosubstrate, suggesting that bioconversion of some functionalized carbon substrates to related polymers in P chlororaphis HS21 could be enhanced by the co-feed of good carbon substrates for cell growth. In addition, the change of compositions of repeating units in MCL-PHAs synthesized from the plant oils was markedly affected by the supplementation of acrylic acid, an inhibitor of fatty acid ${\beta}-oxidation$. The addition of acrylic acid resulted in the increase of longer chain-length repeating units, such as 3-hydroxydodecanoate and 3-hydroxytetradecanoate, in the MCL-PHAs produced. Particularly, MCI-PHAs containing high amounts of unsaturated repeating units could be produced when sunflower oil and corn oil were used as the carbon substrate. These results suggested that the alteration of PHA synthesis pathway by acrylic acid addition can offer the opportunity to design new functional MCL-PHAs and other unusual polyesters that have unique physico-chemical properties.

Enhanced Anaerobic Degradation of Food Waste by Employing Rumen Microorganisms (Rumen 미생물을 이용한 주방폐기물 혐기성소화의 효율증진 방안)

  • Shin, Hang-Sik;Song, Young-Chae;Son, Sung-Sub;Bae, Byung-Uk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.1
    • /
    • pp.103-113
    • /
    • 1993
  • Every year, over $3.37{\times}10^7$ ton of municipal solid waste is generated in Korea, of which about 28% is organic food waste from restaurant, dining halls and households etc. Methane conversion of the food waste by anaerobic digestion could be a viable approach for energy recovery as well as safe disposal of the waste. However, as food waste is composed of highmolecular complex polymers such as cellulose, lignin and protein, anaerobic digestion of food waste has not been efficient in terms of volumetric loading rate, solid retention time and extent of anaerobic degradation. In this research, the improved anaerobic degradation of food waste was attemped by applying rumen microorganisms to anaerobic digestion. Acidification efficiency of food waste by rumen microorganisms was compared with that of conventional acidogenesis. And optimum acidification conditions by rumen microorganisms were also determined. For the experiments, anaerobic batch reactors of 600 mL was fed with the processed (dried and milled) food waste obtained from a restaurant. Ultimate volatile fatty acid (VFA) yield produced by rumen microorganisms was about 8.4 meq VFA/g volatile solid (VS) that is 95% of the theoretical value. This yield was not much different from that of conventional acidogenesis, but hydrolysis rate was about twice faster. Cumulative VFA concentration increased from 66 meq/L to 480 meq/L, when the initial TS was increased from 1% to 15%. But VFA yield at 15% TS was half of that at 1% TS. This inhibition on the acidification might be caused by the rapid drop of pH and higher concentration of nonionized VFA. Optimal pH and temperature range for the acidification were about 6.0~7.5 and $35{\sim}45^{\circ}C$, respectively.

  • PDF

Development of Saccharomyces cerevisiae Strains with High RNA Content (리보핵산을 다량으로 함유하는 Saccharomyces cerevisiae 균주의 개발)

  • Kim, Jae-Sik;Kim, Jin-Wook;Shim, Won;Min, Byoung-Cheol;Kim, Jung-Wan;Park, Kwan-Hwa;Pek, Un-Hua
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.465-474
    • /
    • 1999
  • RNase activity of Saccharomyces cerevisiae ATCC 7754 was investigated to obtain strains with high ribonucleic acid (RNA) content. The yeast strain contained two RNase activities; an acidic RNase with a optima of pH $3{\sim}4$ and an alkaline RNase with a optima pH 9. The acidic RNase activity was inhibited by $0.08\;M\;HgCl_{2}$ most drastically. The alkaline RNase activity was inhibited by 2.0 M NaCl or KCl, while enhanced by addition of $0.05\;M\;CaCl_{2},\;0.02\;M\;ZnSO_{4},\;or\;0.008\;M\;HgCl_{2}$. Various mutants of Saccharomyces cerevisiae ATCC 7754 were isolated by ethylmethane sulfonate (EMS) treatment or $\gamma$-ray/ultra violet irradiation. Among the mutants that were sensitive to high concentration of KCl which inhibits alkaline RNase, B24 was selected for high RNA content per culture volume. Growth characteristics of the mutant were comparable to those of the mother strain with optimum growth at pH $4.5{\sim}5.5$. The mutant accumulated higher content of RNA than the mother strain when glucose was used as the carbon source. However, both growth rate and total RNA content of the mutant were higher in molasses medium than in glucose medium. RNA content of the mutant increased rapidly during the early stage of growth, and then decreased gradually until the culture reached stationary phase by a fed-batch culture in a 5 L jar fermenter. Maximal cell harvest and the final RNA content using the mutant B24 were 69.6 g/L culture broth and 19.8 g/100 g of the dry cell while those using the mother strain were 68 g/L culture broth and 16.1 g/100 g of dry cell, respectively.

  • PDF

Anti-wrinkle Activity of $\beta$-carotene Extracted & Purified from Recombinant Escherichia coli (재조합 대장균으로부터 추출.정제된 베타-카로틴의 주름개선 활성)

  • Jo, Ji-Song;Ku, Bo-Mi;Kang, Sang-Soo;Lee, Jae-Ran;Kim, You-Geun;Lee, He;Kim, Sung-Bae;Kim, Seon-Won;Kim, Chang-Joon;Chung, In-Young
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.513-518
    • /
    • 2008
  • This paper described the extraction/purification of $\beta$-carotene from recombinant E.coli and evaluation of anti-wrinkle activity of purified $\beta$-carotene. No significant differences in extraction yields were observed when hexane or isobutyl acetate was used. However, extraction from wet-cell cake resulted in 2-fold higher amount of $\beta$-carotene than that from dry cells. Disruption of 5 g-wet cells by ultrasonic homogenizer, acetone dehydration, extraction with isobutyl acetate resulted in 36 mg of $\beta$-carotene corresponding to 61.2% of recovery. The formation and separation of $\beta$-carotene crystal improved the purity. 633 mg of $\beta$-carotene crystal with 93% purity was obtained from 223 g/L of wet-cell cake harvested from 2.5-L fed-batch culture broth. The cultures of normal human primary fibroblast were performed to investigate the effect of $\beta$-carotene on cytotoxicity as MTT assay and anti-wrinkle activity as collagen synthesis assays. $1.7{\mu}M$ of $\beta$-carotene was found to be optimal concentration at which 1.4-fold higher amount of collagen was synthesized than that in absence of $\beta$-carotene. This indicates that highly purified $\beta$-carotene can be obtained from recombinant E.coli by applying simple method with less toxic solvent and can be used in functional cosmetics as anti-wrinkle agent.