• Title/Summary/Keyword: fed batch

Search Result 447, Processing Time 0.027 seconds

Enhanced Production of Exopolysaccharides by Fed-batch Culture of Ganoderma resinaceum DG-6556

  • Kim Hyun-Mi;Paik Soon-Young;Ra Kyung-Soo;Koo Kwang-Bon;Yun Jong-Won;Choi Jang-Won
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.233-242
    • /
    • 2006
  • The objectives of this study were to optimize submerged culture conditions of a new fungal isolate, Ganorderma resinaceum, and to enhance the production of bioactive mycelial biomass and exopolysaccharides (EPS) by fed-batch culture. The maximum mycelial growth and EPS production in batch culture were achieved in a medium containing 10 g/l glucose, 8 g/l soy peptone, and 5 mM $MnCl_2$ at an initial pH 6.0 and temperature $31^{\circ}C$. After optimization of culture medium and environmental conditions in batch cultures, a fed-batch culture strategy was employed to enhance production of mycelial biomass and EPS. Five different EPS with molecular weights ranging from 53,000 to 5,257,000 g/mole were obtained from either top or bottom fractions of ethanol precipitate of culture filtrate. A fed-batch culture of G. resinaceum led to enhanced production of both mycelial biomass and EPS. The maximum concentrations of mycelial biomass (42.2 g/l) and EPS (4.6 g/l) were obtained when 50 g/l of glucose was fed at day 6 into an initial 10 g/l of glucose medium. It may be worth attempting with other mushroom fermentation processes for enhanced production of mushroom polysaccharides, particularly those with industrial potential.

Bioreactor Operating Strategy in Scultellaria baicalensis G. Plant Cell Culture for the Production of Flavone Glycosides (Flavonoid 배당체 생산을 위한 Scutellaria baicalensis G. 식물 세포 배양에서 생물반응기 운전전략)

  • 최정우;조진만;이정건;이원홍;김익환;박영훈
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.259-267
    • /
    • 1998
  • Optimal feeding strategies in bioreactor operation of Scutellaria baicalensis G. plant cell culture were investigated to maximize the production of flavone glycosides by using a structured kinetic model which can predict culture growth and flavone glycosides synthesis in a rigorous, quantitative manner. For the production of baicalin and wogonin-7-0-GA, the strategies for glucose feeding into Scutellaria baicalensis G. plant cell culture were proposed based on the model, which are a periodic fed-batch operation with maintenance of cell viability and of specific production rate respectively, and a perfusion operation with maintenance of specific production rate for baicalin and wogonin-7-0-GA. Simulation results showed that the highest volumetric concentration of flavone glycosides was obtained in a periodic fed-batch operation with maintenance of cell viability among all the suggested strategies. In the periodic fed-batch operations, the higher volumetric production of flavone glycosides was achieved compared with that in the perfusion operation. It can be concluded that a periodic fed-batch operation with maintenance of cell viability would be the optimal and practical operating strategy of Scutellaris baicalensis G. plant cell culture for the production of flavone glycosides.

  • PDF

Fed-Batch Simultaneous Saccharification and Fermentation of Waste Paper to Ethanol (폐지의 유가식 동시당화발효에 의한 에탄올 생산)

  • 권정기;문현수;김준석;김승욱;홍석인
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.24-30
    • /
    • 1999
  • The fed-bach simultaneous saccharification and fermentation (SSF) of newspaper to ethanol with Brettanomyces custersii was studied. The initial substrate concentration for the effective fed-batch SSF was 8% (w/v). The initial optimum enzyme concentration was 30 FPU/g cellulose for cellulase and the optimum volumetric ratio of $\beta$-glucosidase to cellulase was 0.1. When 4% (w/v) of ball-milled newspaper was supplemented intermittently at time intervals, considering the mixing of newspaper slurry, the fed-batch SSF showed higher ethanol concentration (26.80 g/L) and two times higher ethanol production yield based on enzyme than the batch SSF.

  • PDF

Application of a Fed-Batch Bioprocess for the Heterologous Production of hSCOMT in Escherichia coli

  • Passarinha, L.A.;Bonifacio, M.J.;Queiroz, J.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.972-981
    • /
    • 2009
  • In this paper, a fed-batch cultivation process in recombinant Escherichia coli BL21(DE3) bacteria, for the production of human soluble catechol-O-methyltransferase (hSCOMT), is presented. For the first time, a straightforward model is applied in a recombinant hSCOMT expression system and distinguishes an initial cell growth phase from a protein production phase upon induction. Specifically, the kinetic model predicts biomass, substrate, and product concentrations in the culture over time and was identified from a series of fed-batch experiments designed by testing several feed profiles. The main advantage of this model is that its parameters can be identified more reliably from distinct fed-batch strategies, such as glycerol pulses and exponential followed by constant substrate additions. Interestingly, with the limited amount of data available, the proposed model accomplishes satisfactorily the experimental results obtained for the three state variables, and no exhaustive process knowledge is required. The comparison of the measurement data obtained in a validation experiment with the model predictions showed the great extrapolation capability of the model presented, which could provide new complementary information for the COMT production system.

Fed-Batch Culture of Brevibacterium CHI for the Production of Nitrile Hydratase (Brevibacterium CH1의 유가 배양에 의한 Nitrile Hydratase의 생산)

  • 황준식;황영보;이처영;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.614-618
    • /
    • 1992
  • The batch and fed-batch cultivations of Brevibacteriurn CHI were carried out for the production of nitrile hydratase. In batch culture, with pH control the cell mass and the specific activity increased more 20% and 30%. respectively. The maximum growth rate was obtained at a glucose concentration of $20g/{\ell}$ because of substrate inhibition. The fed-batch culture of Brevibacteriurn CHI with constant substrate feeding gave a cell density of up to $68g/{\ell}$ and nitrile hydratase activity was maintained at above 6.1units/mg. The cell growth yield on carbon .source was ca. 0,68 g/g glucose consumed. The total nitrile hydratase activity in this fed-batch mode increased up to 414.8 units/m${\ell}$, which amounted to 4.4 times that of the batch culture.

  • PDF

Evaluation of L-Lactic Acid Production in Batch, Fed-batch, and Continuous Cultures of Rhizopus sp. MK-96-1196 Using an Airlift Bioreactor

  • Liu, Tiejun;Miura, Shigenobu;Arimura, Tomohiro;Tei, Min-Yi;Park, Enoch Y.;Okabe, Mitsuyasu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.522-527
    • /
    • 2005
  • Various processes which produce L-lactic acid using ammonia-tolerant mutant strain, Rhizopus sp. MK-96-1196, in a 3L airlift bioreactor were evaluated. When the fed-batch culture was carried out by keeping the glucose concentration at 30g/L, more than 140 g/L of L-lactic acid was produced with a product yield of 83%. In the case of the batch culture with 200g/L of initial glucose concentration, 121g/L of L-lactic acid was obtained but the low product yield based on the amount of glucose consumed. In the case of a continuous culture, 1.5g/L/h of the volumetric productivity with a product yield of 71% was achieved at dilution rate of $0.024\;h^{-1}$. Basis on these results three processes were evaluated by simple variable cost estimation including carbon source, steam, and waste treatment costs. The total variable costs of the fed-batch and continuous cultures were 88% and 140%, respectively, compared to that of batch culture. The fed-batch culture with high L-lactic acid concentration and high product yield decreased variable costs, and was the best-suited for the industrial production of L-lactic acid.

Production of Mannitol Using Leuconostoc mesenteroides NRRL B-1149

  • Kim, Chang-Yong;Lee, Jin-Ha;Kim, Byung-Hoon;Yoo, Sun-Kyun;Seo, Eun-Seong;Cho, Kab-Su;Donal F. Day;Kim, Doman
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.4
    • /
    • pp.234-236
    • /
    • 2002
  • A process for the production of mannitol from fructose (5% to 25%) using Leuconostoc mesenteroides NRRL B-1149 was investigated. Fermentations were carried out In batch or fed-batch fermentations without aeration at 28$\^{C}$, pH 5.0. When 5% fructose was used In batch culture fermentation, the yield of mannitol was 78% of that expected theoretically. When the frurtose concentration was Increased to 10%, the yield dropped to 59.6% of the theoretical value. However, In the fed-batch culture, using 10% fructose, the yield was 81.9% of the theoretical value. In a 15% fruttose fed-batch culture, with 5% fructose being added initially and the other 10% fructose being added as a continuous supply the final yield was 83.7% of the theoretical yield. When 20% fructose was used In the same manner, the yield was 89.5% of theoretical yield.

Production of Mannitol Using Leuconostoc mesenteroides NRRL B-1149

  • 김창영;이진하;김병훈;유선권;소은성;조갑수;Donal F. Day;김도만
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.4
    • /
    • pp.254-254
    • /
    • 2002
  • A process for the production of mannitol from fructose (5% to 25%) using Leuconosyoc mesenteroides NRRL B-1149 was investigated. Fermentations were carried out in bat도 of fed-batch fermentations without aeration at 28℃, pH 5.0. When 5% fructose was used in batch culture fermentation, the yield of mannitol was 78% of that expected theoretically. When the fructose concentration was increased to 10%, the yield dropped to 59.6% of the theoretical value. However, in the fed-batch culture, using 10% fructose, the yield was 81.9% of the theoretical value. In a 15% fructose fed-bat도 culture, with 5% fructose being added initially and the other 10% fructose being added as a continuous supply, the final yield was 83.7% of the theoretical yield. When 20% fructose was used in the same manner, the yield was 89.5% of theoretical yield.

Rapid Determination of the Maximum Specific Growth Rates of Nitrogen Oxidizing Bacteria by Fed-Batch Experiments (Fed-Batch 실험장치(實驗裝置)를 이용한 질산화(窒酸化) 미생물(微生物)들의 최대(最大) 성장율(成長率)의 결정(決定)에 관한 실험적(實驗的) 연구(硏究))

  • Lee, Byonghi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.3
    • /
    • pp.55-63
    • /
    • 1996
  • Nitrification reaction consists of two reactions: nitritification which oxidizes ammonia nitrogen to nitrite nitrogen and nitratification which oxidizes nitrite nitrogen to nitrate nitrogen. Each reaction is carried out by Nitrosomonas and Nitrobacter, respectively. The effective maximum growth rates for both bacteria have to be determined to design aeration tank whenever the aeration tanks have to nitrify ammonia nitrogen in influent. And these values are very important to use mathematical models such as IAWPRC model to simulate nitrification in activated sludge. There are several methods to determine these valves, however, the Fed-Batch experiments can determine these values within 72 hours. In this study, the mathematical equations and experimental procedures for Fed-Batch test are presented. Also, the experimental data and reported values are compared. The estimated mean values of maximum specific growth rates for Nitrosomonas and Nitrobacter are $0.5010day^{-1}$ and $0.6704day^{-1}$, respectively.

  • PDF

Studies of Repeated Fed-Batch Fermentation of Cephalosporin C in an Immobilized Cell Bioreactor

  • Park, Hong-Je;Khang, Yong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.229-233
    • /
    • 1995
  • Acremonium chrysogenum was immobilized in ionotropic gel beads to develop semi-continuous production of cephalosporin C (CPC). Barium alginate beads were more stable than calcium alginate or strontium alginate beads in chemically defined media. The gel stability of Ba-alginate was further increased by cross-linking with polyethyleneimine (PEI). The presence of carboxymethyl cellulose inside Ba-alginate beads did not reduce mass transfer resistance. Ba-alginate microbeads that had little diffusion limitation increased CPC production rate 1.6 fold higher than that of normal beads. CPC fermentation with immobilized cells in Ba-alginate microbeads was performed continuously for 40 days by way of repeated fed-batch operations. Mathematical modeling was developed to describe the repeated fed-batch fermentation system. Results of the computer simulation agreed well with the experimental data, which made it possible to predict an optimal feeding rate that could maximize total CPC productions.

  • PDF