• 제목/요약/키워드: fecal microbiota

검색결과 115건 처리시간 0.037초

Correlation analysis of muscle amino acid deposition and gut microbiota profile of broilers reared at different ambient temperatures

  • Yang, Yuting;Gao, Huan;Li, Xing;Cao, Zhenhui;Li, Meiquan;Liu, Jianping;Qiao, Yingying;Ma, Li;Zhao, Zhiyong;Pan, Hongbin
    • Animal Bioscience
    • /
    • 제34권1호
    • /
    • pp.93-101
    • /
    • 2021
  • Objective: Temperature could influence protein and amino acid deposition as well as gut microbiota profile and composition. However, the specific effects of ambient temperature on amino acids deposition and gut microbiota composition remain insufficiently understood. Methods: A total of 300 one-day-old Avian broilers were randomly divided into three groups and reared at high, medium, and low temperature (HT, MT, and LT), respectively. Breast muscle and fecal samples were collected for amino acid composition analysis and 16S rRNA gene sequence analysis. Results: Our data showed that compared to the MT group, there was a decrease of muscle leucine and tyrosine (p<0.05), as well as an increase of methionine in the HT group (p<0.05) and a decrease of serine in the LT group. Examination of microbiota shift revealed that at genus level, the relative abundance of Turicibacter and Parabacteroides was increased in the HT group (p<0.05) and that the relative abundances of Pandoraea, Achromobacter, Prevotella, Brevundimonas, and Stenotrophomonas in the LT group were higher than those in the MT group (p<0.05). In addition, there were substantial correlations between microbes and amino acids. In the HT group. Turicibacter was negatively correlated with aspartic acid and tyrosine, whereas Parabacteroides was positively correlated with methionine (p<0.05). In the LT group, there were multiple positive correlations between Achromobacter and arginine, isoleucine or tyrosine; between Prevotella and cysteine or phenylalanine; between Brevundimonas and cysteine; and between Stenotrophomonas and cysteine as well as a negative correlation between Stenotrophomonas and serine. Conclusion: Our findings demonstrated that amino acid content of breast muscle and intestinal microbiota profile was affected by different ambient temperatures. Under heat exposure, augmented abundance of Parabacteroides was correlated with elevated methionine. Low temperature treatment may affect muscle tyrosine content through the regulation of Achromobacter.

16S 앰플리콘 시퀀싱 기반 한라마 출생시와 이유기의 분변 미생물 비교 분석 (Comparison of Fecal Microbiota between Birth and Weaning of Halla Horses Using 16S rRNA Gene Amplicon Sequencing)

  • 이종안;강용준;최재영;신상민;신문철
    • 생명과학회지
    • /
    • 제32권12호
    • /
    • pp.1005-1012
    • /
    • 2022
  • 본 연구는 한라마 출생시와 이유기의 분변 미생물 조성과 다양성 차이에 대해 16S 앰플리콘시퀀싱 데이터 분석을 통해 수행하였다. 출생시에 Proteobacteria (35.7%)가, 이유기에는 Firmicutes (45.6%)가 문 수준에서 가장 우점하는 미생물로 확인되었다. 속 수준에서는 출생시에 Escherichia (19.7%), Clostridium (14.0%)가 우점종으로 관측되었으며, 이유기에는 Fibrobacter (6.6%)가 가장 높게 분포하고 있었다. 다양성(α-diversity) 분석 결과 이유기에 풍부도와 균등도 지표들이 통계적으로 유의한 수준에서 높게 나타났다. PCoA 분석을 수행한 결과 출생시와 이유기 미생물 군집 특성(β-diversity)은 속 수준과 종 수준에서 두개의 그룹으로 명확히 구분되었다. 미생물 분포에 대한 통계적 유의성 검증을 위해 세 가지 Jensen-Shannon, Bray-Curtis, Unifrac의 distance metric를 이용해 PERMANOVA 분석을 수행한 결과 통계적 유의성(q<0.001)을 보이며 조성 차이가 있었다. 출생시와 이유기 특성을 대표하는 미생물 마커 선발을 위해 LEfSe 분석을 수행하였다. 속 수준에서 출생시에 장내 질환을 유발할 가능성이 있는 Escherichia, Bacteroides, Clostridium, Methylobacterium 등이 우점하였으며, 이유기에는 섬유소 분해에 관여하는 Fibrobacter가 상대적으로 많이 분포하였다. 본 연구를 통해 승용마로 가치가 높은 한라마의 출생시와 이유기의 미생물 조성 및 다양성 차이에 대한 결과를 제시하였으며 성장단계별 질병예방 및 영양소 흡수에 관여하는 미생물 구명을 위한 기초자료로 활용될 수 있을 것으로 기대한다.

Ingestion of Gouda Cheese Ameliorates the Chronic Unpredictable Mild Stress in Mice

  • Yun, Bohyun;Yoo, Ja Yeon;Park, Mi Ri;Ryu, Sangdon;Lee, Woong Ji;Choi, Hye Jin;Kang, Min Kyoung;Kim, Younghoon;Oh, Sangnam
    • 한국축산식품학회지
    • /
    • 제40권1호
    • /
    • pp.145-153
    • /
    • 2020
  • Depression is a kind of mood disorder characterized by decline in motivation, interest, attention, mental activity, and appetite. Although depression is caused by a variety of causes, including genetic, endocrine and environmental stress, mild depression has been reported to improve with diet. Therefore, various type of food sources including functional and nutritional supplement are required to treat the depressive patients. Cheese contains bioactive peptides that have beneficial effects on host health. In particular, Jersey milk has been reported to contain higher solids than does Holstein milk. This study investigated the effects of Gouda cheese from Jersey and Holstein milk on chronic, unpredictable, mildly stressed (CUMS) mice. Here, spontaneous alterations in cheese-fed stressed mice were noted to be effectively recovered with statistical significance regardless cow species. Interestingly, for the analysis of fecal microbiota, Bacteroidetes were noted to increase with a reduction in Firmicutes at the phylum level with Jersey cheese. Taken together, we suggest that cheese intake provided a beneficial effect on stressed mice in recovering recognition ability. In particular, changes in internal microbiota were observed, suggesting that the bioactive ingredients in cheese act as improvement agents with respect to mood and brain function.

Semi-Rational Screening of Probiotics from the Fecal Flora of Healthy Adults against DSS-Induced Colitis Mice by Enhancing Anti-Inflammatory Activity and Modulating the Gut Microbiota

  • Wang, Weiwei;Xing, Wentao;Wei, Sichen;Gao, Qiaoying;Wei, Xinliang;Shi, Liang;Kong, Yu;Su, Zhenhua
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권9호
    • /
    • pp.1478-1487
    • /
    • 2019
  • Ulcerative colitis (UC), a chronic inflammatory bowel disease, substantially impacts patients' health-related quality of life. In this study, an effective strategy for discovering high-efficiency probiotics has been developed. First, in order to survive in the conditions of the stomach and intestine, high bile salt-resistant and strong acid-resistant strains were screened out from the fecal flora of healthy adults. Next, the probiotic candidates were rescreened by examining the induction ability of IL-10 (anti-inflammatory factor) production in dextran sodium sulfate (DSS)-induced colitis mice, and Lactobacillus sakei 07 (L07) was identified and selected as probiotic P. In the end, fourteen bifidobacterium strains isolated from stools of healthy males were examined for their antimicrobial activity. Bifidobacterium bifidum B10 (73.75% inhibition rate) was selected as probiotic B. Moreover, the colonic IL-6 and $TNF-{\alpha}$ expression of the DSS-induced colitis mice treated with L. sakei 07 (L07) - B. bifidum B10 combination (PB) significantly decreased and the IL-10 expression was up-regulated by PB compared to the DSS group. Furthermore, Bacteroidetes and Actinobacteria decreased and Firmicutes increased in the DSS group mice, significantly. More interestingly, the intestinal flora biodiversity of DSS colitis mice was increased by PB. Of those, the level of B. bifidum increased significantly. The Bacteriodetes/Firmicutes (B/F) ratio increased, and the concentration of homocysteine and LPS in plasma was down-regulated by PB in the DSS-induced colitis mice. Upon administration of PB, the intestinal permeability of the the DSS-induced colitis mice was decreased by approximately 2.01-fold. This method is expected to be used in high-throughput screening of the probiotics against colitis. In addition, the L. sakei 07 - B. bifidum B10 combination holds potential in UC remission by immunomodulatory and gut microbiota modulation.

Insoluble Dietary Fiber from Pear Pomace Can Prevent High-Fat Diet-Induced Obesity in Rats Mainly by Improving the Structure of the Gut Microbiota

  • Chang, Shimin;Cui, Xingtian;Guo, Mingzhang;Tian, Yiling;Xu, Wentao;Huang, Kunlun;Zhang, Yuxing
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권4호
    • /
    • pp.856-867
    • /
    • 2017
  • Supplement of dietary fibers (DF) is regarded as one of the most effective way to prevent and relieve chronic diseases caused by long-term intake of a high-fat diet in the current society. The health benefits of soluble dietary fibers (SDF) have been widely researched and applied, whereas the insoluble dietary fibers (IDF), which represent a higher proportion in plant food, were mistakenly thought to have effects only in fecal bulking. In this article, we proved the anti-obesity and glucose homeostasis improvement effects of IDF from pear pomace at first, and then the mechanisms responsible for these effects were analyzed. The preliminary study by real-time PCR and ELISA showed that this kind of IDF caused more changes in the gut microbiota compared with in satiety hormone or in hepatic metabolism. Further analysis of the gut microbiota by high-throughput amplicon sequencing showed IDF from pear pomace obviously improved the structure of the gut microbiota. Specifically, it promoted the growth of Bacteroidetes and inhibited the growth of Firmicutes. These results are coincident with previous hypothesis that the ratio of Bacteroidetes/Firmicutes is negatively related with obesity. In conclusion, our results demonstrated IDF from pear pomace could prevent high-fat diet-induced obesity in rats mainly by improving the structure of the gut microbiota.

Water Extract of Ecklonia cava Protects against Fine Dust (PM2.5)-Induced Health Damage by Regulating Gut Health

  • Park, Seon Kyeong;Kang, Jin Yong;Kim, Jong Min;Kim, Min Ji;Lee, Hyo Lim;Moon, Jong Hyun;Jeong, Hye Rin;Kim, Hyun-Jin;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권7호
    • /
    • pp.927-937
    • /
    • 2022
  • To confirm the therapeutic effect of the water extract from Ecklonia cava (WEE) against PM2.5 induced systemic health damage, we evaluated gut health with a focus on the microbiota and metabolites. Systemic damage in mice was induced through PM2.5 exposure for 12 weeks in a whole-body chamber. After exposure for 12 weeks, body weight and food intake decreased, and WEE at 200 mg/kg body weight (mpk) alleviated these metabolic efficiency changes. In addition, PM2.5 induced changes in the length of the colon and fecal water content. The administration of the WEE at 200 mpk oral dose effectively reduced changes in the colon caused by PM2.5 exposure. We also attempted to confirm whether the effect of the WEE is mediated via regulation of the microbiota-gut-brain axis in mice with PM2.5 induced systemic damage. We examined changes in the fecal microbiota and gut metabolites such as short-chain fatty acids (SCFAs) and kynurenine metabolites. In the PM2.5 exposed group, a decrease in the abundance of Lactobacillus (Family: Lactobacillaceae) and an increase in the abundance of Alistipes (Family: Rikenellaceae) were observed, and the administration of the WEE showed a beneficial effect on the gut microbiota. In addition, the WEE effectively increased the levels of SCFAs (acetate, propionate, and butyrate). Furthermore, kynurenic acid (KYNA), which is a critical neuroprotective metabolite in the gut-brain axis, was increased by the administration of the WEE. Our findings suggest that the WEE could be used as a potential therapeutic against PM2.5 induced health damage by regulating gut function.

Effect of Lactobacillus rhamnosus hsryfm 1301 on the Gut Microbiota and Lipid Metabolism in Rats Fed a High-Fat Diet

  • Chen, Dawei;Yang, Zhenquan;Chen, Xia;Huang, Yujun;Yin, Boxing;Guo, Feixiang;Zhao, Haiqing;Huang, Jiadi;Wu, Yun;Gu, Ruixia
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.687-695
    • /
    • 2015
  • Accumulating evidence indicates that lactic acid bacteria could improve host physiology and lipid metabolism. To investigate the effect of the gut microbiota on host lipid metabolism, a hyperlipidemic rat model was established by feeding rats a high-fat diet for 28 days, and the gut microbiota of the rats was analyzed using real-time PCR before and after administration of Lactobacillus rhamnosus hsryfm 1301 and its fermented milk for 28 days. The findings showed that the Lactobacillus spp., Bifidobacterium spp., Bacteroides spp., and Enterococcus spp. content in the hyperlipidemic rats gut was increased significantly (p < 0.05), while the Clostridium leptum and Enterobacter spp. content was decreased significantly after intervening with L. rhamnosus hrsyfm 1301 and its fermented milk for 28 days (p < 0.05). Furthermore, the lipid levels of the serum and the liver were decreased significantly (p < 0.05) and the fecal water content was increased significantly (p < 0.05) in the hyperlipidemic rats after the intervention, and hepatocyte fatty degeneration of liver tissues was also prevented. A positive correlation was observed between the Clostridium leptum content and the level of serum cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein, and a negative correlation was observed between the Enterobacter spp. content and the Lactobacillus spp. and Bifidobacterium spp. content in the hyperlipidemic rats gut. These results suggest that the gut microbiota and lipid metabolism of hyperlipidemic rats could be improved by supplementation with L. rhamnosus hsryfm 1301 and its fermented milk.

Effect of Probiotic-Fortified Infant Formula on Infant Gut Health and Microbiota Modulation

  • Ju Young Eor;Chul Sang Lee;Sung Ho Moon;Ju Young Cheon;Duleepa Pathiraja;Byeonghyeok Park;Min Jae Shin;Jae-Young Kim;Sangjong Kim;Youngbae Noh;Yunhan Kim;In-Geol Choi;Sae Hun Kim
    • 한국축산식품학회지
    • /
    • 제43권4호
    • /
    • pp.659-673
    • /
    • 2023
  • Compared to infant formula, breast milk is the best source of nutrition for infants; it not only improves the neonatal intestinal function, but also regulates the immune system and gut microbiota composition. However, probiotic-fortified infant formula may further enhance the infant gut environment by overcoming the limitations of traditional infant formula. We investigated the probiotic formula administration for one month by comparing 118 Korean infants into the following three groups: infants in each group fed with breast milk (50), probiotic formula (35), or placebo formula-fed group (33). Probiotic formula improved stool consistency and defecation frequency compared to placebo formula-fed group. The probiotic formula helped maintaining the level of secretory immunoglobulin A (sIgA), which had remarkably decreased over time in placebo formula-fed infants (compared to weeks 0 and 4). Moreover, probiotic formula decreased the acidity of stool and considerably increased the butyrate concentration. Furthermore, the fecal microbiota of each group was evaluated at weeks 0 and 4. The microbial composition was distinct between each groups, and the abundance of health-promoting bacteria increased in the probiotic formula compared to the placebo formula-fed group. In summary, supplementation of probiotic infant formula can help optimize the infant gut environment, microbial composition, and metabolic activity of the microbiota, mimicking those of breast milk.

한국 남부 지역별 돼지 장내 미생물생태 비교분석 (Differences in swine gut microbiota in southern region of Republic of Korea)

  • 김정만;;;운노타쯔야
    • 미생물학회지
    • /
    • 제51권1호
    • /
    • pp.81-85
    • /
    • 2015
  • 성장촉진제로 항생제 사용이 금지가 된 이후, 가축들의 사망률이 증가되어 항생제 대체제를 개발해야 하는 것이 시급하다. 그러한 대체제 개발에 새로운 접근 중 하나는 숙주의 신체적 기능에 영향을 준다고 알려진 장내미생물생태를 조절하는 것이다. 하지만 가축의 장내미생물에 대한 이해가 인간과 비교하여 볼 때 많이 부족한 실정이다. 본 연구에서는 돼지장내미생물생태가 지역적 차이가 있음에 대한 기본적인 정보를 제공한다. 돼지 분변샘플은 제주(n=40), 광주(n=28), 해남(n=30) 농가로부터 채취하였으며, MiSeq을 이용하여 16S rRNA V4 지역을 시퀀싱하였다. 또한 Mothur 파이프라인을 이용하여 MiSeq으로부터 얻은 데이터를 처리하였다. 총 5,642,125 reads를 얻었으며, 에러시퀀스들을 제거한 후 최종적으로 3,868,143 reads가 남았다. Phylum 수준의 taxonomic composition 분석에서는 제주 돼지들이 Firmicutes를 가장 많이 포함하고 있었으며, Operational Taxonomic Units 분포분석에서 또한 지역적 차이에 따라 돼지장내미생물생태가 다르다는 것을 확인하였다. Non-metric multidimensional scaling과 Phyla의 풍부함 사이의 상관관계분석에서는 Actinobacter, Verrucomicrobia, Firmicutes, Fibrobacteres이 세 개의 지역에 있는 돼지들의 장내미생물생태 차이를 나타나게 하는 장내 미생물 요소라는 것을 확인하였다. 그러한 가축의 장내미생물생태는 농장에서 사용하는 사료와 사양관리에 의해 많은 영향을 미치는 것으로 생각된다. 본 연구결과는 돼지장내미생물생태가 지역적으로 많은 차이가 있다는 것을 나타내며, 추후에 가축의 장내미생물생태에 관한 연구는 지역적 차이가 있다는 것을 고려하여 설계해야 될 것이다.

Impact of different shades of light-emitting diode on fecal microbiota and gut health in broiler chickens

  • Ianni, Andrea;Bennato, Francesca;Di Gianvittorio, Veronica;Di Domenico, Marco;Martino, Camillo;Colapietro, Martina;Camma, Cesare;Martino, Giuseppe
    • Animal Bioscience
    • /
    • 제35권12호
    • /
    • pp.1967-1976
    • /
    • 2022
  • Objective: The aim of this study was to characterize the fecal microbiota of broiler chickens reared in the presence of different shades of light-emitting diode (LED) lights, correlating this information with biochemical and molecular evidence that allowed drawing conclusions on the state of health of the animals. Methods: Overall, the metagenomic approach on fecal samples was associated with evaluations on enzymes involved in the cellular response to oxidative stress: glutathione peroxidase (GPX), superoxide dismutase and catalase; while the inflammatory aspect was studied through the dosage of a proinflammatory cytokine, the interleukin 6 (IL-6), and the evaluation of the matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9). Specifically, analysis was performed on distinct groups of chickens respectively raised in the presence of neutral (K = 3,300 to 3,700), cool (K = 5,500 to 6,000), and warm (K = 3,000 to 2,500) LED lightings, and a direct comparison was performed with animals reared with traditional neon lights. Results: The metagenomic analysis highlighted the presence of two most abundant bacterial phyla, the Firmicutes and the Bacteroidetes, with the latter characterized by a greater relative abundance (p<0.05) in the group of animals reared with Neutral LED light. The analysis on the enzymes involved in the antioxidant response showed an effect of the LED light, regardless of the applied shade, of reducing the expression of GPX (p<0.01), although this parameter is not correlated to an effective reduction in the tissue amount of the enzyme. Regarding the inflammatory state, no differences associated with IL-6 and MMP-9 were found; however, is noteworthy the significant reduction of MMP-2 activity in tissue samples obtained from animals subjected to illumination with neutral LED light. Conclusion: This evidence, combined with the metagenomic findings, supports a potential positive effect of neutral LED lighting on animal welfare, although these considerations must be reflected in more targeted biochemical evaluations.